
6.231 DYNAMIC PROGRAMMING

LECTURE 6

LECTURE OUTLINE

• Review of Q-factors and Bellman equations for
Q-factors

• VI and PI for Q-factors

• Q-learning - Combination of VI and sampling

• Q-learning and cost function approximation

• Adaptive dynamic programming

• Approximation in policy space

• Additional topics



REVIEW



DISCOUNTED MDP

• System: Controlled Markov chain with states
i = 1, . . . , n and finite set of controls u ∈ U(i)

• Transition probabilities: pij(u)

i j

pij(u)

pii(u) p jj(u )

pji(u)

• Cost of a policy π = {µ0, µ1, . . .} starting at
state i:

Jπ(i) = lim
N→∞

E

{

N
∑

k=0

αkg
(

ik, µk(ik), ik+1

)

| i = i0

}

with α ∈ [0, 1)

• Shorthand notation for DP mappings

(TJ)(i) = min
u∈U(i)

n
∑

j=1

pij(u)
(

g(i, u, j)+αJ(j)
)

, i = 1, . . . , n,

(TµJ)(i) =

n
∑

j=1

pij
(

µ(i)
)(

g
(

i, µ(i), j
)

+αJ(j)
)

, i = 1, . . . , n



BELLMAN EQUATIONS FOR Q-FACTORS

• The optimal Q-factors are defined by

Q∗(i, u) =
n
∑

j=1

pij(u)
(

g(i, u, j) +αJ∗(j)
)

, ∀ (i, u)

• Since J∗ = TJ∗, we have J∗(i) = minu∈U(i) Q∗(i, u)
so the optimal Q-factors solve the equation

Q∗(i, u) =

n
∑

j=1

pij(u)

(

g(i, u, j) + α min
u′∈U(j)

Q∗(j, u′)

)

• Equivalently Q∗ = FQ∗, where

(FQ)(i, u) =
n
∑

j=1

pij(u)

(

g(i, u, j) + α min
u′∈U(j)

Q(j, u′)

)

• This is Bellman’s Eq. for a system whose states
are the pairs (i, u)

• Similar mapping Fµ and Bellman equation for
a policy µ: Qµ = FµQµ



BELLMAN EQ FOR Q-FACTORS OF A POLICY

) States

State-Control Pairs (i, u) States

) States j p

j pij(u)

) g(i, u, j)

v µ(j)

j)
(

j, µ(j)
)

State-Control Pairs: Fixed Policy µ Case (

• Q-factors of a policy µ: For all (i, u)

Qµ(i, u) =
n
∑

j=1

pij(u)
(

g(i, u, j) + αQµ

(

j, µ(j)
))

Equivalently Qµ = FµQµ, where

(FµQ)(i, u) =
n
∑

j=1

pij(u)
(

g(i, u, j) + αQ
(

j, µ(j)
))

• This is a linear equation. It can be used for
policy evaluation.

• Generally VI and PI can be carried out in terms
of Q-factors.

• When done exactly they produce results that
are mathematically equivalent to cost-based VI
and PI.



WHAT IS GOOD AND BAD ABOUT Q-FACTORS

• All the exact theory and algorithms for costs
applies to Q-factors

− Bellman’s equations, contractions, optimal-
ity conditions, convergence of VI and PI

• All the approximate theory and algorithms for
costs applies to Q-factors

− Projected equations, sampling and exploration
issues, oscillations, aggregation

• A MODEL-FREE (on-line) controller imple-
mentation

− Once we calculate Q∗(i, u) for all (i, u),

µ∗(i) = arg min
u∈U(i)

Q∗(i, u), ∀ i

− Similarly, once we calculate a parametric ap-
proximation Q̃(i, u; r) for all (i, u),

µ̃(i) = arg min
u∈U(i)

Q̃(i, u; r), ∀ i

• The main bad thing: Greater dimension and
more storage! (It can be used for large-scale prob-
lems only through aggregation, or other approxi-
mation.)



Q-LEARNING



Q-LEARNING

• In addition to the approximate PI methods
adapted for Q-factors, there is an important addi-
tional algorithm:

− Q-learning, a sampled form of VI (a stochas-
tic iterative algorithm).

• Q-learning algorithm (in its classical form):

− Sampling: Select sequence of pairs (ik, uk)
[use any probabilistic mechanism for this,
but all (i, u) are chosen infinitely often].

− Iteration: For each k, select jk according to
pikj(uk). Update just Q(ik, uk):

Qk+1(ik,uk) = (1− γk)Qk(ik, uk)

+ γk

(

g(ik, uk, jk) + α min
u′∈U(jk)

Qk(jk, u′)

)

Leave unchanged all other Q-factors.

− Stepsize conditions: γk ↓ 0

• We move Q(i, u) in the direction of a sample of

(FQ)(i, u) =

n
∑

j=1

pij(u)

(

g(i, u, j) + α min
u′∈U(j)

Q(j, u′)

)



NOTES AND QUESTIONS ABOUT Q-LEARNING

Qk+1(ik,uk) = (1− γk)Qk(ik, uk)

+ γk

(

g(ik, uk, jk) + α min
u′∈U(jk)

Qk(jk, u′)

)

• Model free implementation. We just need a
simulator that given (i, u) produces next state j
and cost g(i, u, j)

• Operates on only one state-control pair at a
time. Convenient for simulation, no restrictions on
sampling method. (Connection with asynchronous
algorithms.)

• Aims to find the (exactly) optimal Q-factors.

• Why does it converge to Q∗?

• Why can’t I use a similar algorithm for optimal
costs (a sampled version of VI)?

• Important mathematical (fine) point: In the Q-
factor version of Bellman’s equation the order of
expectation and minimization is reversed relative
to the cost version of Bellman’s equation:

J∗(i) = min
u∈U(i)

n
∑

j=1

pij(u)
(

g(i, u, j) + αJ∗(j)
)



CONVERGENCE ASPECTS OF Q-LEARNING

• Q-learning can be shown to converge to true/exact
Q-factors (under mild assumptions).

• The proof is sophisticated, based on theories of
stochastic approximation and asynchronous algo-
rithms.

• Uses the fact that the Q-learning map F :

(FQ)(i, u) = Ej

{

g(i, u, j) + αmin
u′

Q(j, u′)
}

is a sup-norm contraction.

• Generic stochastic approximation algorithm:

− Consider generic fixed point problem involv-
ing an expectation:

x = Ew

{

f(x,w)
}

− Assume Ew

{

f(x,w)
}

is a contraction with
respect to some norm, so the iteration

xk+1 = Ew

{

f(xk, w)
}

converges to the unique fixed point

− Approximate Ew

{

f(x,w)
}

by sampling



STOCH. APPROX. CONVERGENCE IDEAS

• For each k, obtain samples {w1, . . . , wk} and
use the approximation

xk+1 =
1

k

k
∑

t=1

f(xk, wt) ≈ E
{

f(xk, w)
}

• This iteration approximates the convergent fixed
point iteration xk+1 = Ew

{

f(xk, w)
}

• Amajor flaw: it requires, for each k, the compu-
tation of f(xk, wt) for all values wt, t = 1, . . . , k.

• This motivates the more convenient iteration

xk+1 =
1

k

k
∑

t=1

f(xt, wt), k = 1, 2, . . . ,

that is similar, but requires much less computa-
tion; it needs only one value of f per sample wt.

• By denoting γk = 1/k, it can also be written as

xk+1 = (1− γk)xk + γkf(xk, wk), k = 1, 2, . . .

• Compare with Q-learning, where the fixed point
problem is Q = FQ

(FQ)(i, u) = Ej

{

g(i, u, j) + αmin
u′

Q(j, u′)
}



Q-LEARNING COMBINED WITH OPTIMISTIC PI

• Each Q-learning iteration requires minimization
over all controls u′ ∈ U(jk):

Qk+1(ik,uk) = (1− γk)Qk(ik, uk)

+ γk

(

g(ik, uk, jk) + α min
u′∈U(jk)

Qk(jk, u′)

)

• To reduce this overhead we may consider re-
placing the minimization by a simpler operation
using just the “current policy” µk

• This suggests an asynchronous sampled version
of the optimistic PI algorithm which policy eval-
uates by

Qk+1 = Fmk

µk Qk,

and policy improves by µk+1(i) ∈ argminu∈U(i) Qk+1(i, u)

• This turns out not to work (counterexamples
by Williams and Baird, which date to 1993), but
a simple modification of the algorithm is valid

• See a series of papers starting with
D. Bertsekas and H. Yu, “Q-Learning and En-
hanced Policy Iteration in Discounted Dynamic
Programming,” Math. of OR, Vol. 37, 2012, pp.
66-94



Q-FACTOR APPROXIMATIONS

• We introduce basis function approximation:

Q̃(i, u; r) = φ(i, u)′r

• We can use approximate policy iteration and
LSTD/LSPE for policy evaluation

• Optimistic policy iteration methods are fre-
quently used on a heuristic basis

• An extreme example: Generate trajectory {(ik, uk) |
k = 0, 1, . . .} as follows.

• At iteration k, given rk and state/control (ik, uk):

(1) Simulate next transition (ik, ik+1) using the
transition probabilities pikj(uk).

(2) Generate control uk+1 from

uk+1 = arg min
u∈U(ik+1)

Q̃(ik+1, u, rk)

(3) Update the parameter vector via

rk+1 = rk − (LSPE or TD-like correction)

• Complex behavior, unclear validity (oscilla-
tions, etc). There is solid basis for an important
special case: optimal stopping (see text)



BELLMAN EQUATION ERROR APPROACH

• Another model-free approach for approximate
evaluation of policy µ: Approximate Qµ(i, u) with
Q̃µ(i, u; rµ) = φ(i, u)′rµ, obtained from

rµ ∈ argmin
r

∥

∥Φr − Fµ(Φr)
∥

∥

2

ξ

where ‖ · ‖ξ is Euclidean norm, weighted with re-
spect to some distribution ξ.

• Implementation for deterministic problems:

(1) Generate a large set of sample pairs (ik, uk),
and corresponding deterministic costs g(ik, uk)
and transitions

(

jk, µ(jk)
)

(a simulator may
be used for this).

(2) Solve the linear least squares problem:

min
r

∑

(ik,uk)

∣

∣

∣
φ(ik, uk)′r −

(

g(ik, uk) + αφ
(

jk, µ(jk)
)′

r
)

∣

∣

∣

2

• For stochastic problems a similar (more com-
plex) least squares approach works (see the text).

• Because this approach is model-free, it is often
used as the basis for adaptive control of systems
with unknown dynamics.



ADAPTIVE CONTROL BASED ON ADP



LINEAR-QUADRATIC PROBLEM

• System: xk+1 = Axk+Buk, xk ∈ ℜn, uk ∈ ℜm

• Cost:
∑

∞

k=0(x
′

kQxk + ukRuk), Q ≥ 0, R > 0

• Optimal policy is linear: µ∗(x) = Lx

• The Q-factor of each linear policy µ is quadratic:

Qµ(x, u) = (x′ u′ )Kµ

(

x
u

)

(∗)

• Assume A and B are unknown

• We represent Q-factors using as basis func-
tions all the quadratic functions involving state
and control components

xixj , uiuj , xiuj , ∀ i, j

These are the “rows” φ(x, u)′ of Φ

• The Q-factor Qµ of a linear policy µ can be ex-
actly represented within the approximation sub-
space:

Qµ(x, u) = φ(x, u)′rµ

where rµ consists of the components of Kµ in (*)



PI FOR LINEAR-QUADRATIC PROBLEM

• Policy evaluation: rm is found by the Bellman
error approach

min
r

∑

(xk,uk)

∣

∣

∣
φ(xk, uk)

′
r −
(

x
′

kQxk + ukRuk + φ
(

xk+1, µ(xk+1)
)′

r
)

∣

∣

∣

2

where (xk, uk, xk+1) are many samples generated
by the system or a simulator of the system.

• Policy improvement:

µ(x) ∈ argmin
u

φ(x, u)′rµ

• Knowledge of A and B is not required

• If the policy evaluation is done exactly, this
becomes exact PI, and convergence to an optimal
policy can be shown

• The basic idea of this example has been gener-
alized and forms the starting point of the field of
adaptive dynamic programming

• This field deals with adaptive control of continuous-
space, (possibly nonlinear) dynamic systems, in
both discrete and continuous time



APPROXIMATION IN POLICY SPACE



APPROXIMATION IN POLICY SPACE

• We parametrize policies by a vector r = (r1, . . . , rs)
(an approximation architecture for policies).

• Each policy µ̃(r) =
{

µ̃(i; r) | i = 1, . . . , n
}

defines a cost vector Jµ̃(r) (a function of r).

• We optimize some measure of Jµ̃(r) over r.

• For example, use a random search, gradient, or
other method to minimize over r

n
∑

i=1

ξiJµ̃(r)(i),

where ξ1, . . . , ξn are some state-dependent weights.

• An important special case: Introduce cost ap-
proximation architecture V (i; r) that defines indi-
rectly the parametrization of the policies

µ̃(i; r) = arg min
u∈U(i)

n
∑

j=1

pij(u)
(

g(i, u, j)+αV (j; r)
)

, ∀ i

• This introduces state features into approxima-
tion in policy space.

• A policy approximator is called an actor, while
cost parametrization is also called a critic. An
actor and a critic may coexist.



APPROXIMATION IN POLICY SPACE METHODS

• Random search methods are straightforward
and have scored some impressive successes with
challenging problems (e.g., tetris).

− At a given point/r they generate a random
collection of neighboring r. They search within
the neighborhood for better points.

− Many variations (the cross entropy method
is one).

− They are very broadly applicable (to discrete
and continuous search spaces).

− They are idiosynchratic.

• Gradient-type methods (known as policy gra-
dient methods) also have been used extensively.

− They move along the gradient with respect
to r of

n
∑

i=1

ξiJµ̃(r)(i)

− There are explicit gradient formulas which
can be approximated by simulation.

− Policy gradient methods generally suffer by
slow convergence, local minima, and exces-
sive simulation noise.



COMBINATION WITH APPROXIMATE PI

• Another possibility is to try to implement PI
within the class of parametrized policies.

• Given a policy/actor µ(i; rk), we evaluate it
(perhaps approximately) with a critic that pro-
duces J̃µ, using some policy evaluation method.

• We then consider the policy improvement phase

µ(i) ∈ argmin
u

n
∑

j=1

pij(u)
(

g(i, u, j) + αJ̃µ(j)
)

, ∀ i

and do it approximately via parametric optimiza-
tion

min
r

n
∑

i=1

ξi

n
∑

j=1

pij
(

µ(i; r)
)

(

g
(

i, µ(i; r), j
)

+αJ̃µ(j)

)

where ξi are some weights.

• This can be attempted by a gradient-type method
in the space of the parameter vector r.

• Schemes like this been extensively applied to
continuous-space deterministic problems.

• Many unresolved theoretical issues, particularly
for stochastic problems.



FINAL WORDS



TOPICS THAT WE HAVE NOT COVERED

• Extensions to discounted semi-Markov, stochas-
tic shortest path problems, average cost problems,
sequential games ...

• Extensions to continuous-space problems

• Extensions to continuous-time problems

• Adaptive DP - Continuous-time deterministic
optimal control. Approximation of cost function
derivatives or cost function differences

• Random search methods for approximate policy
evaluation or approximation in policy space

• Basis function adaptation (automatic genera-
tion of basis functions, optimal selection of basis
functions within a parametric class)

• Simulation-based methods for general linear
problems, i.e., solution of linear equations, linear
least squares, etc - Monte- Carlo linear algebra



CONCLUDING REMARKS

• There is no clear winner among ADP methods

• There is interesting theory in all types of meth-
ods (which, however, does not provide ironclad
performance guarantees)

• There are major flaws in all methods:

− Oscillations and exploration issues in approx-
imate PI with projected equations

− Restrictions on the approximation architec-
ture in approximate PI with aggregation

− Flakiness of optimization in policy space ap-
proximation

• Yet these methods have impressive successes
to show with enormously complex problems, for
which there is no alternative methodology

• There are also other competing ADP methods
(rollout is simple, often successful, and generally
reliable; approximate LP is worth considering)

• Theoretical understanding is important and
nontrivial

• Practice is an art and a challenge to our cre-
ativity!



THANK YOU


