6.231 DYNAMIC PROGRAMMING
LECTURE 6

LECTURE OUTLINE

e Review of Q-factors and Bellman equations for
Q-factors

e VI and PI for Q-factors

e ()-learning - Combination of VI and sampling
e (Q-learning and cost function approximation
e Adaptive dynamic programming

e Approximation in policy space

e Additional topics



REVIEW



DISCOUNTED MDP

e System: Controlled Markov chain with states
i =1,...,n and finite set of controls u € U (%)

e Transition probabilities: p;;(u)

pii(u)

Piill) ‘0‘0’ pjjlu

pjilu)

e Cost of a policy m = {uo, p1,...} starting at
state ¢:

J(i) = lim E{Zakg(ik,uk(ik),ikﬂ) |i—io}

N — o0
k=0

with « € [0, 1)
e Shorthand notation for DP mappings



BELLMAN EQUATIONS FOR Q-FACTORS

e The optimal ()-factors are defined by

Q*(4,u) = sz‘j(u) (9(i,u, ) +aJ*(j)), ¥ (i,u)

e Since J* = T'J*, we have J*(i) = min, ey ;) Q* (4, u)
so the optimal ()-factors solve the equation

u' €U (j)

Q (i) = Y- pisa) (sl )+ min Qo))
j=1
e LEquivalently * = F'QQ*, where

(FQ)(iu) = > pis(u) (g@',u,j)m i Q(j,w)

u' €U (j)

e Thisis Bellman’s Eq. for a system whose states
are the pairs (i, u)

e Similar mapping F), and Bellman equation for
a policy p: Qu = F.Q



BELLMAN EQ FOR @Q-FACTORS OF A POLICY

State-Control Pairs: Fixed Policy p

States

e (-factors of a policy u: For all (i, u)

Equivalently Qu = F,,(Q),,, where
(FLQ)(i,u) me g(i,u, §) + aQ(j, u()))

e This is a hnear equation. It can be used for
policy evaluation.

e Generally VI and PI can be carried out in terms
of Q-factors.

e When done exactly they produce results that

are mathematically equivalent to cost-based VI
and PI.



WHAT IS GOOD AND BAD ABOUT Q-FACTORS

e All the exact theory and algorithms for costs
applies to Q-factors

— Bellman’s equations, contractions, optimal-
ity conditions, convergence of VI and PI

e All the approximate theory and algorithms for
costs applies to Q-factors

— Projected equations, sampling and exploration
issues, oscillations, aggregation

e A MODEL-FREE (on-line) controller imple-
mentation

— Once we calculate Q*(¢,u) for all (¢, u),

p*(i) = arg min Q*(¢,u), Vi
ueU (3)

— Similarly, once we calculate a parametric ap-
proximation Q(z,wu;r) for all (z,u),

(i) = arg min Q(i,u;7), Ve
uel (7)

e¢ The main bad thing: Greater dimension and
more storage! (It can be used for large-scale prob-
lems only through aggregation, or other approxi-
mation.)



Q-LEARNING



Q-LEARNING

e In addition to the approximate PI methods
adapted for Q-factors, there is an important addi-
tional algorithm:

— Q-learning, a sampled form of VI (a stochas-
tic iterative algorithm).
e ()-learning algorithm (in its classical form):

— Sampling: Select sequence of pairs (ix, ug)
luse any probabilistic mechanism for this,
but all (i,u) are chosen infinitely often].

— Iteration: For each k, select 5. according to
Pirj(uk). Update just Q (i, ux):

Qr+1(ik,ur) = (1 — ) Qr ik, ur)

+ vk | 9(ik, vk, jk) + @ min  Qr(Jk, u’)
u €U (jr)

Leave unchanged all other Q-factors.

— Stepsize conditions: v; | 0
e We move Q(7,u) in the direction of a sample of

u’ €U (7)
J=1



NOTES AND QUESTIONS ABOUT Q-LEARNING

Qr+1(tk,ur) = (1 — ) Qk ik, ug)

+ Y | 9k, uk, Jk) + @ min  Qr(jr,u’)
u €U (jk)

e Model free implementation. We just need a
simulator that given (i,u) produces next state j
and cost g(7,u, 7)

e Operates on only one state-control pair at a
time. Convenient for simulation, no restrictions on
sampling method. (Connection with asynchronous
algorithms.)

e Aims to find the (exactly) optimal Q-factors.
e Why does it converge to QQ*7

e Why can’t I use a similar algorithm for optimal
costs (a sampled version of VI)?

e Important mathematical (fine) point: In the Q-
tactor version of Bellman’s equation the order of
expectation and minimization is reversed relative
to the cost version of Bellman’s equation:

J*(i) = ulfen(}%) sz'j(u) (9(i,u, J) + aJ*(4))



CONVERGENCE ASPECTS OF Q-LEARNING

e (-learning can be shown to converge to true/exact
Q-factors (under mild assumptions).

e The proof is sophisticated, based on theories of
stochastic approximation and asynchronous algo-
rithms.

e Uses the fact that the Q-learning map F:

(FQ)(i,u) = E;{g(i, u,7) + aminQ(j,u) }
1S a sup-norm contraction.

e Generic stochastic approximation algorithm:

— Consider generic fixed point problem involv-
ing an expectation:

T = Ew{f(a:,w)}

— Assume Ey{f(z,w)} is a contraction with
respect to some norm, so the iteration

Trt1 = Ew{f(zr, w)}

converges to the unique fixed point

— Approximate F,, { f(x, w)} by sampling



STOCH. APPROX. CONVERGENCE IDEAS

e For each k, obtain samples {wi,...,w;} and
use the approximation

k
Lk+1 = % Zf(xkawt) ~ E{f(xkaw)}
t=1

e Thisiteration approximates the convergent fixed
point iteration xpq = Ew{f(cck, w)}

e A major flaw: it requires, for each k, the compu-
tation of f(xy,w;) for all values wy, t =1,... k.

e 'This motivates the more convenient iteration

k
1
xk+1:E;f(xt7wt)7 k:1,2,...,

that is similar, but requires much less computa-
tion; it needs only one value of f per sample wy.

e By denoting v = 1/k, it can also be written as

Try1 = (I — v)ze + W f(ap,wr), k=1,2,...

e Compare with ()-learning, where the fixed point
problem is () = F'()

(FQ)(i,u) = Ej{g(i,u, j) + amin Q(j, v') }



Q-LEARNING COMBINED WITH OPTIMISTIC PI

e Each Q-learning iteration requires minimization
over all controls u’ € U(ji):

Qr+1(ik,ur) = (1 — 7)) Qr (Tk, uk)

+ Vi | 9k, g, Jk) + o min Qr(Jk, u')
uw €U (jk)
e To reduce this overhead we may consider re-
placing the minimization by a simpler operation
using just the “current policy” px

e This suggests an asynchronous sampled version
of the optimistic PI algorithm which policy eval-
uates by

Qk—l—l — F/Zik Qk?
and policy improves by p**!(i) € arg miny, ey (i) Qu+1 (3, u)

e This turns out not to work (counterexamples
by Williams and Baird, which date to 1993), but
a simple modification of the algorithm is valid

e See a series of papers starting with

D. Bertsekas and H. Yu, “Q-Learning and En-
hanced Policy Iteration in Discounted Dynamic
Programming,” Math. of OR, Vol. 37, 2012, pp.
66-94



Q-FACTOR APPROXIMATIONS

e We introduce basis function approximation:

~

Q(i,u;m) = (i, u)'r

e We can use approximate policy iteration and
LSTD/LSPE for policy evaluation

e Optimistic policy iteration methods are fre-
quently used on a heuristic basis

e An extreme example: Generate trajectory {(ix, ug) |
k=0,1,...} as follows.

e At iteration k, given 1y and state/control (ig, ug):

(1) Simulate next transition (ig,ix41) using the
transition probabilities p;, ; (uk).

(2) Generate control ugy1 from

~

Upt+1 = arg min = Q(ik41,u, k)
UEU(Zk+1)

(3) Update the parameter vector via

rr+1 = rx — (LSPE or TD-like correction)

e Complex behavior, unclear validity (oscilla-
tions, etc). There is solid basis for an important
special case: optimal stopping (see text)



BELLMAN EQUATION ERROR APPROACH

e Another model-free approach for approximate
evaluation of policy u: Approximate @, (4, u) with
Qu(t,u;r,) = ¢(2,u)'r,, obtained from

ru € argmin || ®r — FM((I)T)HE

where || - ||¢ is Euclidean norm, weighted with re-
spect to some distribution &.

e Implementation for deterministic problems:

(1) Generate a large set of sample pairs (i, ux),
and corresponding deterministic costs g(ix, ux)
and transitions (jx, u(jx)) (a simulator may

be used for this).
(2) Solve the linear least squares problem:

2

mrin Z |qb(7jk,uk)’7°— (g(ik,uk) ‘|‘04§b(jkzaﬂ(jk))/r)

e For stochastic problems a similar (more com-
plex) least squares approach works (see the text).

e Because this approach is model-free, it is often
used as the basis for adaptive control of systems
with unknown dynamics.



ADAPTIVE CONTROL BASED ON ADP



LINEAR-QUADRATIC PROBLEM

o System: xpy11 = Axrp+Bug, xp € R, up € k™
o Cost: Y~ (2} Qxr +urRuy), @ >0, R>0

e Optimal policy is linear: u*(x) = Lx

e The Q-factor of each linear policy u is quadratic:

Qurwy =o' K (L) ()

u

e Assume A and B are unknown

e We represent Q-factors using as basis func-
tions all the quadratic functions involving state
and control components

xiad, utud, xiud, Vi,7

These are the “rows” ¢(x,u)’ of

e The Q-factor (), of a linear policy p can be ex-
actly represented within the approximation sub-
space:

QM (xa u) — gb(xa U)’T,u

where 7, consists of the components of K, in (*)



PI FOR LINEAR-QUADRATIC PROBLEM

e Policy evaluation: ry, is found by the Bellman
error approach

2

mrin Z ‘gb(azk, up)'r — (a?;anfk + ur Ruk + ¢($k+1> H(mkﬂ))/r)

where (xg,ug, Tr+1) are many samples generated
by the system or a simulator of the system.

e Policy improvement:

a(x) € argmin ¢(x,u)'r,

e Knowledge of A and B is not required

e If the policy evaluation is done exactly, this
becomes exact PI, and convergence to an optimal
policy can be shown

e The basic idea of this example has been gener-
alized and forms the starting point of the field of
adaptive dynamic programming

e This field deals with adaptive control of continuous-
space, (possibly nonlinear) dynamic systems, in
both discrete and continuous time



APPROXIMATION IN POLICY SPACE



APPROXIMATION IN POLICY SPACE

e We parametrize policies by a vector r = (r1,...,7s)

(an approximation architecture for policies).

e Each policy a(r) = {a(i;r) | i = 1,...,n}
defines a cost vector Jj(,) (a function of r).

e We optimize some measure of J;(,) over r.

e For example, use a random search, gradient, or
other method to minimize over r

> &idam (i),
1=1

where &1, ..., &, are some state-dependent weights.

e An important special case: Introduce cost ap-
proximation architecture V (i;r) that defines indi-
rectly the parametrization of the policies

mn

A(i;r) = arg min Y pij(u)(g(i, u, j)+aV (j;r)),
uel (1) .

e This introduces state features into approxima-

tion in policy space.

e A policy approximator is called an actor, while
cost parametrization is also called a critic. An
actor and a critic may coexist.



APPROXIMATION IN POLICY SPACE METHODS

e¢ Random search methods are straightforward
and have scored some impressive successes with
challenging problems (e.g., tetris).

— At a given point/r they generate a random
collection of neighboring . They search within
the neighborhood for better points.

— Many variations (the cross entropy method
is one).
— They are very broadly applicable (to discrete
and continuous search spaces).
— They are idiosynchratic.
e Gradient-type methods (known as policy gra-
dient methods) also have been used extensively.

— They move along the gradient with respect
to r of

> & (i)
1=1

— There are explicit gradient formulas which
can be approximated by simulation.

— Policy gradient methods generally suffer by
slow convergence, local minima, and exces-
sive simulation noise.



COMBINATION WITH APPROXIMATE PI

e Another possibility is to try to implement PI
within the class of parametrized policies.

e Given a policy/actor u(i;rr), we evaluate it
(perhaps approximately) with a critic that pro-
duces J,,, using some policy evaluation method.

e We then consider the policy improvement phase

~

i) € argmin }  pi(w) (90w, 5) + adu(7)), Vi

and do it approximately via parametric optimiza-
tion

mrin S: & S:pij (ﬁ(i; 7“)) (g(iv a(e;r), j)+@ju(j))

where &; are some weights.

e This can be attempted by a gradient-type method
in the space of the parameter vector r.

e Schemes like this been extensively applied to
continuous-space deterministic problems.

e Many unresolved theoretical issues, particularly
for stochastic problems.



FINAL WORDS



TOPICS THAT WE HAVE NOT COVERED

e Lixtensions to discounted semi-Markov, stochas-
tic shortest path problems, average cost problems,
sequential games ...

e Extensions to continuous-space problems
e Extensions to continuous-time problems

e Adaptive DP - Continuous-time deterministic
optimal control. Approximation of cost function
derivatives or cost function differences

e Random search methods for approximate policy
evaluation or approximation in policy space

e Basis function adaptation (automatic genera-
tion of basis functions, optimal selection of basis
functions within a parametric class)

e Simulation-based methods for general linear
problems, i.e., solution of linear equations, linear
least squares, etc - Monte- Carlo linear algebra



CONCLUDING REMARKS

e There is no clear winner among ADP methods

e Thereis interesting theory in all types of meth-
ods (which, however, does not provide ironclad
performance guarantees)

e There are major flaws in all methods:

— Oscillations and exploration issues in approx-
imate PI with projected equations

— Restrictions on the approximation architec-
ture in approximate PI with aggregation

— Flakiness of optimization in policy space ap-
proximation

e Yet these methods have impressive successes
to show with enormously complex problems, for
which there is no alternative methodology

e There are also other competing ADP methods
(rollout is simple, often successful, and generally
reliable; approximate LP is worth considering)

e¢ Theoretical understanding is important and
nontrivial

e Practice is an art and a challenge to our cre-
ativity!



THANK YOU



