
6.231 DYNAMIC PROGRAMMING

LECTURE 5

LECTURE OUTLINE

• Review of approximate PI based on projected
Bellman equations

• Issues of policy improvement

− Exploration enhancement in policy evalua-
tion

− Oscillations in approximate PI

• Aggregation – An alternative to the projected
equation/Galerkin approach

• Examples of aggregation

• Simulation-based aggregation

• Relation between aggregation and projected
equations

REVIEW

DISCOUNTED MDP

• System: Controlled Markov chain with states
i = 1, . . . , n and finite set of controls u ∈ U(i)

• Transition probabilities: pij(u)

i j

pij(u)

pii(u) p jj(u)

pji(u)

• Cost of a policy π = {µ0, µ1, . . .} starting at
state i:

Jπ(i) = lim
N→∞

E

{

N
∑

k=0

αkg
(

ik, µk(ik), ik+1

)

| i = i0

}

with α ∈ [0, 1)

• Shorthand notation for DP mappings

(TJ)(i) = min
u∈U(i)

n
∑

j=1

pij(u)
(

g(i, u, j)+αJ(j)
)

, i = 1, . . . , n,

(TµJ)(i) =

n
∑

j=1

pij
(

µ(i)
)(

g
(

i, µ(i), j
)

+αJ(j)
)

, i = 1, . . . , n

APPROXIMATE PI

Approximate Policy

Evaluation

Policy ImprovementGenerate “Improved” Policy µ

Initial Policy Controlled System Cost per Stage Vector
tion Matrix ()

i, u, r) J̃µ(i, r)

Evaluate Approximate Cost Steady-State Distribution
Cost ()

• Evaluation of typical policy µ: Linear cost func-
tion approximation

J̃µ(r) = Φr

where Φ is full rank n × s matrix with columns
the basis functions, and ith row denoted φ(i)′.

• Policy “improvement” to generate µ:

µ(i) = arg min
u∈U(i)

n
∑

j=1

pij(u)
(

g(i, u, j) + αφ(j)′r
)

EVALUATION BY PROJECTED EQUATIONS

• Approximate policy evaluation by solving

Φr = ΠTµ(Φr)

Π: weighted Euclidean projection; special nature
of the steady-state distribution weighting.

• Implementation by simulation (single long tra-
jectory using current policy - important to make
ΠTµ a contraction). LSTD, LSPE methods.

• Multistep option: Solve Φr = ΠT
(λ)
µ (Φr) with

T
(λ)
µ = (1− λ)

∞
∑

ℓ=0

λℓT ℓ+1
µ

− As λ ↑ 1, ΠT (λ) becomes a contraction for
any projection norm

− Bias-variance tradeoff

Subspace S = {Φr | r ∈ ℜs} Set

Slope Jµ

Simulation error
Simulation error ΠJµ

Simulation error Bias

) λ = 0

= 0 λ = 1 0

. Solution of projected equation Φ

Simulation error Solution of

∗ Φr = ΠT (λ)(Φr)

ISSUES OF POLICY IMPROVEMENT

EXPLORATION

• 1st major issue: exploration. To evaluate µ,
we need to generate cost samples using µ

• This biases the simulation by underrepresenting
states that are unlikely to occur under µ.

• As a result, the cost-to-go estimates of these
underrepresented states may be highly inaccurate,
and seriously impact the “improved policy” µ.

• This is known as inadequate exploration - a
particularly acute difficulty when the randomness
embodied in the transition probabilities is “rela-
tively small” (e.g., a deterministic system).

• To deal with this we must change the sampling
mechanism and modify the simulation formulas.

• Solve
Φr = ΠTµ(Φr)

where Π is projection with respect to an exploration-
enhanced norm [uses a weight distribution ζ =
(ζ1, . . . , ζn)].

• ζ is more “balanced” than ξ the steady-state
distribution of the Markov chain of µ.

• This also addresses any lack of ergodicity of µ.

EXPLORATION MECHANISMS

• One possibility: Use multiple short simulation
trajectories instead of single long trajectory start-
ing from a rich mixture of states. This is known
as geometric sampling, or free-form sampling.

− By properly choosing the starting states, we
enhance exploration

− The simulation formulas for LSTD(λ) and
LSPE(λ) have to be modified to yield the
solution of Φr = ΠT (Φr) (see the DP text)

• Another possibility: Use a modified policy to
generate a single long trajectory. This is called an
off-policy approach.

− Modify the transition probabilities of µ to
enhance exploration

− Again the simulation formulas for LSTD(λ)
and LSPE(λ) have to be modified to yield
the solution of Φr = ΠT (Φr) (use of impor-
tance sampling; see the DP text)

• With larger values of λ > 0 the contraction

property of ΠT
(λ)
µ is maintained.

• LSTD may be used without ΠT
(λ)
µ being a con-

traction ...

POLICY ITERATION ISSUES: OSCILLATIONS

• 2nd major issue: oscillation of policies

• Analysis using the greedy partition: Rµ is the
set of parameter vectors r for which µ is greedy
with respect to J̃(·; r) = Φr

Rµ =
{

r | Tµ(Φr) = T (Φr)
}

• There is a finite number of possible vectors rµ,
one generated from another in a deterministic way

rµk

k rµk+1

+1 rµk+2

+2 rµk+3

Rµk

Rµk+1

Rµk+2

+2 Rµk+3

• The algorithm ends up repeating some cycle of
policies µk, µk+1, . . . , µk+m with

rµk ∈ Rµk+1 , rµk+1 ∈ Rµk+2 , . . . , rµk+m ∈ Rµk ;

• Many different cycles are possible

MORE ON OSCILLATIONS/CHATTERING

• In the case of optimistic policy iteration a dif-
ferent picture holds

rµ1

1 rµ2

2 rµ3

Rµ1

Rµ2

2 Rµ3

• Oscillations are less violent, but the “limit”
point is meaningless!

• Fundamentally, oscillations are due to the lack
of monotonicity of the projection operator, i.e.,
J ≤ J ′ does not imply ΠJ ≤ ΠJ ′.

• If approximate PI uses an evaluation of the form

Φr = (WTµ)(Φr)

with W : monotone and WTµ: contraction, the
policies converge (to a possibly nonoptimal limit).

• The operator W in the aggregation approach
has the monotonicity and contraction properties.

AGGREGATION

PROBLEM APPROXIMATION - AGGREGATION

• Another major idea in ADP is to approximate
the cost-to-go function of the given problem with
the cost-to-go function of a simpler problem.

• Aggregation is a systematic approach for prob-
lem approximation. Main elements:

− Introduce a few “aggregate” states, viewed
as the states of an “aggregate” system

− Define transition probabilities and costs of
the aggregate system, by relating original
system states with aggregate states

− Solve (exactly or approximately) the “ag-
gregate” problem by any kind of VI or PI
method (including simulation-based methods)

• If R̂(y) is the optimal cost of aggregate state y,
we use the approximation

J∗(j) ≈
∑

y

φjyR̂(y), ∀ j

where φjy are the aggregation probabilities, en-
coding the “degree of membership of j in the ag-
gregate state y”

• This is a linear architecture: φjy are the features
of state j

HARD AGGREGATION EXAMPLE

• Group the original system states into subsets,
and view each subset as an aggregate state

• Aggregation probs.: φjy = 1 if j belongs to
aggregate state y (piecewise constant approx).

1 2 3 4 5 6 7 8 91 2 3 4 5 6 7 8 91 2 3 4 5 6 7 8 9

1 2 3 4 5 6 7 8 91 2 3 4 5 6 7 8 91 2 3 4 5 6 7 8 9

1 2 3 4 5 6 7 8 91 2 3 4 5 6 7 8 91 2 3 4 5 6 7 8 9

1 2 3 4 5 6 7 8 9 x1 x2

x3 x4

Φ =

1 0 0 0

1 0 0 0

0 1 0 0

1 0 0 0

1 0 0 0

0 1 0 0

0 0 1 0

0 0 1 0

0 0 0 1

• What should be the transition probs. out of x?
Select i ∈ x and use the transition probs. of i.

• Suppose I am at aggregate state x, what does
this tell me about which of the states i ∈ x I am?

• The simplest possibility is to assume that all
states in x are equally likely.

• A generalization is to use the disaggregation
probabilities dxi: Roughly, the “degree to which i

is representative of x.”

AGGREGATION/DISAGGREGATION PROBS

according to pij(u), with cost

dxi

S

φjyQ

, j = 1i

), x), y

Original System States Aggregate States

{

Original System States Aggregate States

{

|

Original System States Aggregate States

Disaggregation Probabilities

{

Aggregation Probabilities

Disaggregation Probabilities

Aggregation Probabilities

Disaggregation Probabilities

{

Aggregation Probabilities

Disaggregation Probabilities

Matrix D Matrix D Matrix Φ

• Define the aggregate system transition proba-
bilities via two (somewhat arbitrary) choices.

• For each original system state j and aggregate
state y, the aggregation probability φjy

− Roughly, the “degree of membership of j in
the aggregate state y.”

− In hard aggregation, φjy = 1 if state j be-
longs to aggregate state/subset y.

• For each aggregate state x and original system
state i, the disaggregation probability dxi

− Roughly, the “degree to which i is represen-
tative of x.”

• Aggregation scheme is defined by the two ma-
trices D and Φ. The rows of D and Φ must be
probability distributions.

AGGREGATE SYSTEM DESCRIPTION

• The transition probability from aggregate state
x to aggregate state y under control u

p̂xy(u) =
n
∑

i=1

dxi

n
∑

j=1

pij(u)φjy, or P̂ (u) = DP (u)Φ

where the rows of D and Φ are the disaggregation
and aggregation probs.

• The expected transition cost is

ĝ(x, u) =
n
∑

i=1

dxi

n
∑

j=1

pij(u)g(i, u, j), or ĝ = DPg

according to pij(u), with cost

dxi

S

φjyQ

, j = 1i

), x), y

Original System States Aggregate States

{

Original System States Aggregate States

{

|

Original System States Aggregate States

p̂xy(u) =

n∑

i=1

dxi

n∑

j=1

pij(u)φjy ,

Disaggregation Probabilities

{

Aggregation Probabilities

Disaggregation Probabilities

Aggregation Probabilities

Disaggregation Probabilities

{

Aggregation Probabilities

Disaggregation Probabilities

ĝ(x, u) =

n∑

i=1

dxi

n∑

j=1

pij(u)g(i, u, j)

, g(i, u, j)
Matrix Matrix

AGGREGATE BELLMAN’S EQUATION

according to pij(u), with cost

dxi

S

φjyQ

, j = 1i

), x), y

Original System States Aggregate States

{

Original System States Aggregate States

{

|

Original System States Aggregate States

p̂xy(u) =

n∑

i=1

dxi

n∑

j=1

pij(u)φjy ,

Disaggregation Probabilities

{

Aggregation Probabilities

Disaggregation Probabilities

Aggregation Probabilities

Disaggregation Probabilities

{

Aggregation Probabilities

Disaggregation Probabilities

ĝ(x, u) =

n∑

i=1

dxi

n∑

j=1

pij(u)g(i, u, j)

, g(i, u, j)
Matrix Matrix

• The optimal cost function of the aggregate prob-
lem, denoted R̂, is

R̂(x) = min
u∈U

[

ĝ(x, u) + α
∑

y

p̂xy(u)R̂(y)

]

, ∀ x

Bellman’s equation for the aggregate problem.

• The optimal cost function J∗ of the original
problem is approximated by J̃ given by

J̃(j) =
∑

y

φjyR̂(y), ∀ j

EXAMPLE I: HARD AGGREGATION

• Group the original system states into subsets,
and view each subset as an aggregate state

• Aggregation probs.: φjy = 1 if j belongs to
aggregate state y.

1 2 3 4 5 6 7 8 91 2 3 4 5 6 7 8 91 2 3 4 5 6 7 8 9

1 2 3 4 5 6 7 8 91 2 3 4 5 6 7 8 91 2 3 4 5 6 7 8 9

1 2 3 4 5 6 7 8 91 2 3 4 5 6 7 8 91 2 3 4 5 6 7 8 9

1 2 3 4 5 6 7 8 9 x1 x2

x3 x4

Φ =

1 0 0 0

1 0 0 0

0 1 0 0

1 0 0 0

1 0 0 0

0 1 0 0

0 0 1 0

0 0 1 0

0 0 0 1

• Disaggregation probs.: There are many possi-
bilities, e.g., all states i within aggregate state x

have equal prob. dxi.

• If optimal cost vector J∗ is piecewise constant
over the aggregate states/subsets, hard aggrega-
tion is exact. Suggests grouping states with “roughly
equal” cost into aggregates.

• A variant: Soft aggregation (provides “soft
boundaries” between aggregate states).

EXAMPLE II: FEATURE-BASED AGGREGATION

• Important question: How do we group states
together?

• If we know good features, it makes sense to
group together states that have “similar features”

Special States Aggregate States Features
)

Special States Aggregate States FeaturesSpecial States Aggregate States Features

Feature Extraction Mapping Feature Vector
Feature Extraction Mapping Feature Vector

• A general approach for passing from a feature-
based state representation to an aggregation-based
architecture

• Essentially discretize the features and generate
a corresponding piecewise constant approximation
to the optimal cost function

• Aggregation-based architecture is more power-
ful (nonlinear in the features)

• ... but may require many more aggregate states
to reach the same level of performance as the cor-
responding linear feature-based architecture

EXAMPLE III: REP. STATES/COARSE GRID

• Choose a collection of “representative” original
system states, and associate each one of them with
an aggregate state

x j

x j1 j2

j2 j3

x j1

j3 y1 1 y2

2 y3

y3 Original State Space

Representative/Aggregate States

• Disaggregation probabilities are dxi = 1 if i is
equal to representative state x.

• Aggregation probabilities associate original sys-
tem states with convex combinations of represen-
tative states

j ∼
∑

y∈A

φjyy

• Well-suited for Euclidean space discretization

• Extends nicely to continuous state space, in-
cluding belief space of POMDP

EXAMPLE IV: REPRESENTATIVE FEATURES

• Here the aggregate states are nonempty subsets
of original system states. Common case: Each Sx

is a group of states with “similar features”

y3 Original State Space

Aggregate States/Subsets
0 1 2 49

Sx1

Small cost

Sx2

Small cost

Sx3

ij j

ij j

Aggregate States/Subsets
0 1 2 49 i

pij

φ

pij

φ

φjx1

φjx2

φjx3

• Restrictions:

− The aggregate states/subsets are disjoint.

− The disaggregation probabilities satisfy dxi >

0 if and only if i ∈ x.

− The aggregation probabilities satisfy φjy = 1
for all j ∈ y.

• Hard aggregation is a special case: ∪xSx =
{1, . . . , n}

• Aggregation with representative states is a spe-
cial case: Sx consists of just one state

APPROXIMATE PI BY AGGREGATION

according to pij(u), with cost

dxi

S

φjyQ

, j = 1i

), x), y

Original System States Aggregate States

{

Original System States Aggregate States

{

|

Original System States Aggregate States

p̂xy(u) =

n∑

i=1

dxi

n∑

j=1

pij(u)φjy ,

Disaggregation Probabilities

{

Aggregation Probabilities

Disaggregation Probabilities

Aggregation Probabilities

Disaggregation Probabilities

{

Aggregation Probabilities

Disaggregation Probabilities

ĝ(x, u) =

n∑

i=1

dxi

n∑

j=1

pij(u)g(i, u, j)

, g(i, u, j)
Matrix Matrix

• Consider approximate PI for the original prob-
lem, with policy evaluation done by aggregation.

• Evaluation of policy µ: J̃ = ΦR, where R =
DTµ(ΦR) (R is the vector of costs of aggregate
states for µ). Can be done by simulation.

• Looks like projected equation ΦR = ΠTµ(ΦR)
(but with ΦD in place of Π).

• Advantages: It has no problem with oscillations.

• Disadvantage: The rows of D and Φ must be
probability distributions.

ADDITIONAL ISSUES OF AGGREGATION

ALTERNATIVE POLICY ITERATION

• The preceding PI method uses policies that as-
sign a control to each aggregate state.

• An alternative is to use PI for the combined
system, involving the Bellman equations:

R∗(x) =
n
∑

i=1

dxiJ̃0(i), x ∈ A,

J̃0(i) = min
u∈U(i)

n
∑

j=1

pij(u)
(

g(i, u, j)+αJ̃1(j)
)

, i = 1, . . . , n,

J̃1(j) =
∑

y∈A

φjyR∗(y), j = 1, . . . , n.

according to pij(u), with cost

dxi

S

φjyQ

, j = 1i

), x), y

Original System States Aggregate States

{

Original System States Aggregate States

{

|

Original System States Aggregate States

Disaggregation Probabilities

{

Aggregation Probabilities

Disaggregation Probabilities

Aggregation Probabilities

Disaggregation Probabilities

{

Aggregation Probabilities

Disaggregation Probabilities

Matrix D Matrix D Matrix Φ

• Simulation-based PI and VI are still possible.

RELATION OF AGGREGATION/PROJECTION

• Compare aggregation and projected equations

ΦR = ΦDT (ΦR), Φr = ΠT (Φr)

• If ΦD is a projection (with respect to some
weighted Euclidean norm), then the methodology
of projected equations applies to aggregation

• Hard aggregation case: ΦD can be verified to be
projection with respect to weights ξi proportional
to the disaggregation probabilities dxi

• Aggregation with representative features case:
ΦD can be verified to be a semi-norm projection
with respect to weights ξi proportional to dxi

• A (weighted) Euclidean semi-norm is defined by

‖J‖ξ =

√

∑n
i=1 ξi

(

J(i)
)2
, where ξ = (ξ1, . . . , ξn),

with ξi≥ 0.

• If Φ′ΞΦ is invertible, the entire theory and
algorithms of projected equations generalizes to
semi-norm projected equations [including multi-
step methods such as LSTD/LSPE/TD(λ)].

• Reference: Yu and Bertsekas, “Weighted Bell-
man Equations and their Applications in Approxi-
mate Dynamic Programming,” MIT Report, 2012.

DISTRIBUTED AGGREGATION I

• We consider decomposition/distributed solu-
tion of large-scale discounted DP problems by hard
aggregation.

• Partition the original system states into subsets
S1, . . . , Sm

• Distributed VI Scheme: Each subset Sℓ

− Maintains detailed/exact local costs

J(i) for every original system state i ∈ Sℓ

using aggregate costs of other subsets

− Maintains an aggregate costR(ℓ) =
∑

i∈Sℓ
dℓiJ(i)

− Sends R(ℓ) to other aggregate states

• J(i) and R(ℓ) are updated by VI according to

Jk+1(i) = min
u∈U(i)

Hℓ(i, u, Jk, Rk), ∀ i ∈ Sℓ

with Rk being the vector of R(ℓ) at time k, and

Hℓ(i, u, J,R) =

n
∑

j=1

pij(u)g(i, u, j) + α
∑

j∈Sℓ

pij(u)J(j)

+ α
∑

j∈S
ℓ′

, ℓ′ 6=ℓ

pij(u)R(ℓ′)

DISTRIBUTED AGGREGATION II

• Can show that this iteration involves a sup-
norm contraction mapping of modulus α, so it
converges to the unique solution of the system of
equations in (J,R)

J(i) = min
u∈U(i)

Hℓ(i, u, J,R), R(ℓ) =
∑

i∈Sℓ

dℓiJ(i),

∀ i ∈ Sℓ, ℓ = 1, . . . ,m.

• This follows from the fact that {dℓi | i =
1, . . . , n} is a probability distribution.

• View these equations as a set of Bellman equa-
tions for an “aggregate” DP problem. The differ-
ence is that the mapping H involves J(j) rather
than R

(

x(j)
)

for j ∈ Sℓ.

• In an asynchronous version of the method, the
aggregate costs R(ℓ) may be outdated to account
for communication “delays” between aggregate states.

• Convergence can be shown using the general
theory of asynchronous distributed computation
(see the text).

