
6.231 DYNAMIC PROGRAMMING

LECTURE 4

LECTURE OUTLINE

• Review of approximation in value space

• Approximate VI and PI

• Projected Bellman equations

• Matrix form of the projected equation

• Simulation-based implementation

• LSTD and LSPE methods

• Optimistic versions

• Multistep projected Bellman equations

• Bias-variance tradeoff



REVIEW



DISCOUNTED MDP

• System: Controlled Markov chain with states
i = 1, . . . , n, and finite control set U(i) at state i

• Transition probabilities: pij(u)

i j

pij(u)

pii(u) p jj(u )

pji(u)

• Cost of a policy π = {µ0, µ1, . . .} starting at
state i:

Jπ(i) = lim
N→∞

E

{

N
∑

k=0

αkg
(

ik, µk(ik), ik+1

)

| i0 = i

}

with α ∈ [0, 1)

• Shorthand notation for DP mappings

(TJ)(i) = min
u∈U(i)

n
∑

j=1

pij(u)
(

g(i, u, j)+αJ(j)
)

, i = 1, . . . , n,

(TµJ)(i) =

n
∑

j=1

pij
(

µ(i)
)(

g
(

i, µ(i), j
)

+αJ(j)
)

, i = 1, . . . , n



“SHORTHAND” THEORY – A SUMMARY

• Bellman’s equation: J∗ = TJ∗, Jµ = TµJµ or

J∗(i) = min
u∈U(i)

n
∑

j=1

pij(u)
(

g(i, u, j)+αJ∗(j)
)

, ∀ i

Jµ(i) =
n
∑

j=1

pij
(

µ(i)
)(

g
(

i, µ(i), j
)

+ αJµ(j)
)

, ∀ i

• Optimality condition:

µ: optimal <==> TµJ∗ = TJ∗

i.e.,

µ(i) ∈ arg min
u∈U(i)

n
∑

j=1

pij(u)
(

g(i, u, j)+αJ∗(j)
)

, ∀ i



THE TWO MAIN ALGORITHMS: VI AND PI

• Value iteration: For any J ∈ ℜn

J∗(i) = lim
k→∞

(T kJ)(i), ∀ i = 1, . . . , n

• Policy iteration: Given µk

− Policy evaluation: Find Jµk by solving

Jµk (i) =

n
∑

j=1

pij
(

µ
k(i)

)(

g
(

i, µ
k(i), j

)

+αJµk (j)
)

, i = 1, . . . , n

or Jµk = TµkJµk

− Policy improvement: Let µk+1 be such that

µ
k+1(i) ∈ arg min

u∈U(i)

n
∑

j=1

pij(u)
(

g(i, u, j)+αJµk (j)
)

, ∀ i

or Tµk+1Jµk = TJµk

• Policy evaluation is equivalent to solving an
n× n linear system of equations

• For large n, exact PI is out of the question
(even though it terminates finitely)



APPROXIMATION IN VALUE SPACE

• Approximate J∗ or Jµ from a parametric class
J̃(i; r), where i is the current state and r = (r1, . . . , rs)
is a vector of “tunable” scalars weights

• Think n: HUGE, s: (Relatively) SMALL

• Many types of approximation architectures [i.e.,
parametric classes J̃(i; r)] to select from

• Any r ∈ ℜs defines a (suboptimal) one-step
lookahead policy

µ̃(i) = arg min
u∈U(i)

n
∑

j=1

pij(u)
(

g(i, u, j)+αJ̃(j; r)
)

, ∀ i

• We want to find a “good” r

• We will focus mostly on linear architectures

J̃(r) = Φr

where Φ is an n × s matrix whose columns are
viewed as basis functions



LINEAR APPROXIMATION ARCHITECTURES

• We have

J̃(i; r) = φ(i)′r, i = 1, . . . , n

where φ(i)′, i = 1, . . . , n is the ith row of Φ, or

J̃(r) = Φr =
s

∑

j=1

Φjrj

where Φj is the jth column of Φ

State i

Approximator
i Feature Extraction Mapping Feature Vector

Approximator ( )Feature Extraction Mapping Feature VectorFeature Extraction Mapping Feature Vector

Feature Extraction Mapping Feature Vector φ(i) Linear Cost
i) Linear Cost

i) Linear Cost
Approximator φ(i)′r

• This is approximation on the subspace

S = {Φr | r ∈ ℜs}
spanned by the columns of Φ (basis functions)

• Many examples of feature types: Polynomial
approximation, radial basis functions, etc

• Instead of computing Jµ or J∗, which is huge-
dimensional, we compute the low-dimensional r =
(r1, . . . , rs) using low-dimensional calculations



APPROXIMATE VALUE ITERATION



APPROXIMATE (FITTED) VI

• Approximates sequentially Jk(i) = (T kJ0)(i),
k = 1, 2, . . ., with J̃k(i; rk)

• The starting function J0 is given (e.g., J0 ≡ 0)

• Approximate (Fitted) Value Iteration: A se-
quential “fit” to produce J̃k+1 from J̃k, i.e., J̃k+1 ≈
T J̃k or (for a single policy µ) J̃k+1 ≈ TµJ̃k

Subspace S = {Φr | r ∈ ℜs} Set

Fitted Value Iteration
{

Fitted Value Iteration J0

0 TJ0
}

0 J̃1
}

˜
1 T J̃1

1 J̃2

˜
2 T J̃2

˜
2 J̃3

• After a large enough numberN of steps, J̃N (i; rN )
is used as approximation J̃(i; r) to J∗(i)

• Possibly use (approximate) projection Π with
respect to some projection norm,

J̃k+1 ≈ ΠT J̃k



WEIGHTED EUCLIDEAN PROJECTIONS

• Consider a weighted Euclidean norm

‖J‖ξ =

√

√

√

√

n
∑

i=1

ξi
(

J(i)
)2
,

where ξ = (ξ1, . . . , ξn) is a positive distribution
(ξi > 0 for all i).

• Let Π denote the projection operation onto

S = {Φr | r ∈ ℜs}

with respect to this norm, i.e., for any J ∈ ℜn,

ΠJ = Φr∗

where
r∗ = arg min

r∈ℜs

‖Φr − J‖2ξ

• Recall that weighted Euclidean projection can
be implemented by simulation and least squares,
i.e., sampling J(i) according to ξ and solving

min
r∈ℜs

k
∑

t=1

(

φ(it)′r − J(it)
)2



FITTED VI - NAIVE IMPLEMENTATION

• Select/sample a “small” subset Ik of represen-
tative states

• For each i ∈ Ik, given J̃k, compute

(T J̃k)(i) = min
u∈U(i)

n
∑

j=1

pij(u)
(

g(i, u, j) + αJ̃k(j; r)
)

• “Fit” the function J̃k+1(i; rk+1) to the “small”
set of values (T J̃k)(i), i ∈ Ik (for example use
some form of approximate projection)

• Simulation can be used for “model-free” imple-
mentation

• Error Bound: If the fit is uniformly accurate
within δ > 0, i.e.,

max
i

|J̃k+1(i)− T J̃k(i)| ≤ δ,

then

lim sup
k→∞

max
i=1,...,n

(

J̃k(i, rk)− J∗(i)
)

≤ 2αδ

(1− α)2

• But there is a potential problem!



AN EXAMPLE OF FAILURE

• Consider two-state discounted MDP with states
1 and 2, and a single policy.

− Deterministic transitions: 1 → 2 and 2 → 2

− Transition costs ≡ 0, so J∗(1) = J∗(2) = 0.

• Consider (exact) fitted VI scheme that approx-
imates cost functions within S =

{

(r, 2r) | r ∈ ℜ
}

with a weighted least squares fit; here Φ =

(

1
2

)

• Given J̃k = (rk, 2rk), we find J̃k+1 = (rk+1, 2rk+1),
where J̃k+1 = Πξ(T J̃k), with weights ξ = (ξ1, ξ2):

rk+1 = argmin
r

[

ξ1
(

r−(T J̃k)(1)
)2
+ξ2

(

2r−(T J̃k)(2)
)2
]

• With straightforward calculation

rk+1 = αβrk, where β = 2(ξ1+2ξ2)/(ξ1+4ξ2) > 1

• So if α > 1/β (e.g., ξ1 = ξ2 = 1), the sequence
{rk} diverges and so does {J̃k}.
• Difficulty is that T is a contraction, but ΠξT
(= least squares fit composed with T ) is not.



NORM MISMATCH PROBLEM

• For the method to converge, we need ΠξT to
be a contraction; the contraction property of T is
not enough

Subspace S = {Φr | r ∈ ℜs} Set

Fitted Value Iteration J0

0 TJ0
}

˜
1 T J̃1

˜
2 T J̃2

Fitted Value Iteration with Projection J
{ }

0 J̃1 = Πξ(TJ0)

1̃ J̃2 = Πξ(T J̃1)

} 2 J̃3 = Πξ(T J̃2)

• We need a vector of weights ξ such that T is
a contraction with respect to the weighted Eu-
clidean norm ‖ · ‖ξ
• Then we can show that ΠξT is a contraction
with respect to ‖ · ‖ξ
• We will come back to this issue



APPROXIMATE POLICY ITERATION



APPROXIMATE PI

Approximate Policy

Evaluation

Policy ImprovementGenerate “Improved” Policy µ

Initial Policy Controlled System Cost per Stage Vector
tion Matrix ( )

i, u, r) J̃µ(i, r)

Evaluate Approximate Cost Steady-State Distribution
Cost ( )

• Evaluation of typical policy µ: Linear cost func-
tion approximation J̃µ(r) = Φr, where Φ is full
rank n × s matrix with columns the basis func-
tions, and ith row denoted φ(i)′.

• Policy “improvement” to generate µ:

µ(i) = arg min
u∈U(i)

n
∑

j=1

pij(u)
(

g(i, u, j) + αφ(j)′r
)

• Error Bound (same as approximate VI): If

max
i

|J̃µk(i, rk)− Jµk(i)| ≤ δ, k = 0, 1, . . .

the sequence {µk} satisfies

lim sup
k→∞

max
i

(

Jµk(i)− J∗(i)
)

≤ 2αδ

(1− α)2



POLICY EVALUATION

• Let’s consider approximate evaluation of the
cost of the current policy by using simulation.

− Direct policy evaluation - Cost samples gen-
erated by simulation, and optimization by
least squares

− Indirect policy evaluation - solving the pro-
jected equation Φr = ΠTµ(Φr) where Π is
projection w/ respect to a suitable weighted
Euclidean norm

Subspace S = {Φr | r ∈ ℜs} Set

= 0

Subspace S = {Φr | r ∈ ℜs} Set

= 0

Direct Method: Projection of cost vector Jµ Π

µ ΠJµ

Tµ(Φr)

Φr = ΠTµ(Φr)

Indirect Method: Solving a projected form of Bellman’s equation

Projection onIndirect Method: Solving a projected form of Bellman’s equation

Direct Method: Projection of cost vector
( ) ( ) ( )Direct Method: Projection of cost vector Jµ

• Recall that projection can be implemented by
simulation and least squares



PI WITH INDIRECT POLICY EVALUATION

Approximate Policy

Evaluation

Policy ImprovementGenerate “Improved” Policy µ

Initial Policy Controlled System Cost per Stage Vector
tion Matrix ( )

i, u, r) J̃µ(i, r)

Evaluate Approximate Cost Steady-State Distribution
Cost ( )

• Given the current policy µ:

− We solve the projected Bellman’s equation

Φr = ΠTµ(Φr)

− We approximate the solution Jµ of Bellman’s
equation

J = TµJ

with the projected equation solution J̃µ(r)



KEY QUESTIONS AND RESULTS

• Does the projected equation have a solution?

• Under what conditions is the mapping ΠTµ a
contraction, so ΠTµ has unique fixed point?

• Assumption: The Markov chain corresponding
to µ has a single recurrent class and no transient
states, i.e., it has steady-state probabilities that
are positive

ξj = lim
N→∞

1

N

N
∑

k=1

P (ik = j | i0 = i) > 0

Note that ξj is the long-term frequency of state j.

• Proposition: (Norm Matching Property) As-
sume that the projection Π is with respect to ‖·‖ξ,
where ξ = (ξ1, . . . , ξn) is the steady-state proba-
bility vector. Then:

(a) ΠTµ is contraction of modulus α with re-
spect to ‖ · ‖ξ.

(b) The unique fixed point Φr∗ of ΠTµ satisfies

‖Jµ − Φr∗‖ξ ≤ 1√
1− α2

‖Jµ −ΠJµ‖ξ



PRELIMINARIES: PROJECTION PROPERTIES

• Important property of the projection Π on S
with weighted Euclidean norm ‖ · ‖ξ. For all J ∈
ℜn, Φr ∈ S, the Pythagorean Theorem holds:

‖J − Φr‖2ξ = ‖J −ΠJ‖2ξ + ‖ΠJ − Φr‖2ξ

Subspace S = {Φr | r ∈ ℜs} Set

r Φr

}

J

J ΠJ

• The Pythagorean Theorem implies that the pro-
jection is nonexpansive, i.e.,

‖ΠJ −ΠJ̄‖ξ ≤ ‖J − J̄‖ξ, for all J, J̄ ∈ ℜn.

To see this, note that

∥

∥Π(J − J)
∥

∥

2

ξ
≤

∥

∥Π(J − J)
∥

∥

2

ξ
+

∥

∥(I −Π)(J − J)
∥

∥

2

ξ

= ‖J − J‖2ξ



PROOF OF CONTRACTION PROPERTY

• Lemma: If P is the transition matrix of µ,

‖Pz‖ξ ≤ ‖z‖ξ, z ∈ ℜn

Proof: Let pij be the components of P . For all
z ∈ ℜn, we have

‖Pz‖2ξ =
n
∑

i=1

ξi





n
∑

j=1

pijzj





2

≤
n
∑

i=1

ξi

n
∑

j=1

pijz2j

=

n
∑

j=1

n
∑

i=1

ξipijz2j =

n
∑

j=1

ξjz2j = ‖z‖2ξ ,

where the inequality follows from the convexity of
the quadratic function, and the next to last equal-
ity follows from the defining property

∑n

i=1 ξipij =
ξj of the steady-state probabilities.

• Using the lemma, the nonexpansiveness of Π,
and the definition TµJ = g + αPJ , we have

‖ΠTµJ−ΠTµJ̄‖ξ ≤ ‖TµJ−TµJ̄‖ξ = α‖P (J−J̄)‖ξ ≤ α‖J−J̄‖ξ

for all J, J̄ ∈ ℜn. Hence ΠTµ is a contraction of
modulus α.



PROOF OF ERROR BOUND

• Let Φr∗ be the fixed point of ΠT . We have

‖Jµ − Φr∗‖ξ ≤ 1√
1− α2

‖Jµ −ΠJµ‖ξ.

Proof: We have

‖Jµ − Φr∗‖2ξ = ‖Jµ −ΠJµ‖2ξ +
∥

∥ΠJµ − Φr∗
∥

∥

2

ξ

= ‖Jµ −ΠJµ‖2ξ +
∥

∥ΠTJµ −ΠT (Φr∗)
∥

∥

2

ξ

≤ ‖Jµ −ΠJµ‖2ξ + α2‖Jµ − Φr∗‖2ξ ,

where

− The first equality uses the Pythagorean The-
orem

− The second equality holds because Jµ is the
fixed point of T and Φr∗ is the fixed point
of ΠT

− The inequality uses the contraction property
of ΠT .

Q.E.D.



SIMULATION-BASED SOLUTION OF

PROJECTED EQUATION



MATRIX FORM OF PROJECTED EQUATION

Subspace S = {Φr | r ∈ ℜs} Set

= 0

Tµ(Φr)= g + αPΦr

r Φr = ΠξTµ(Φr)

• The solution Φr∗ satisfies the orthogonality con-
dition: The error

Φr∗ − (g + αPΦr∗)

is “orthogonal” to the subspace spanned by the
columns of Φ.

• This is written as

Φ′Ξ
(

Φr∗ − (g + αPΦr∗)
)

= 0,

where Ξ is the diagonal matrix with the steady-
state probabilities ξ1, . . . , ξn along the diagonal.

• Equivalently, Cr∗ = d, where

C = Φ′Ξ(I − αP )Φ, d = Φ′Ξg

but computing C and d is HARD (high-dimensional
inner products).



SOLUTION OF PROJECTED EQUATION

• Solve Cr∗ = d by matrix inversion: r∗ = C−1d

• Projected Value Iteration (PVI) method:

Φrk+1 = ΠT (Φrk) = Π(g + αPΦrk)

Converges to r∗ because ΠT is a contraction.

S: Subspace spanned by basis functions

Φrk

T(Φrk) = g + αPΦrk

0

Φrk+1

Value Iterate

Projection
on S

• PVI can be written as:

rk+1 = arg min
r∈ℜs

∥

∥Φr − (g + αPΦrk)
∥

∥

2

ξ

By setting to 0 the gradient with respect to r,

Φ′Ξ
(

Φrk+1 − (g + αPΦrk)
)

= 0,

which yields

rk+1 = rk − (Φ′ΞΦ)−1(Crk − d)



SIMULATION-BASED IMPLEMENTATIONS

• Key idea: Calculate simulation-based approxi-
mations based on k samples

Ck ≈ C, dk ≈ d

• Matrix inversion r∗ = C−1d is approximated
by

r̂k = C−1
k dk

This is the LSTD (Least Squares Temporal Dif-
ferences) Method.

• PVI method rk+1 = rk − (Φ′ΞΦ)−1(Crk − d) is
approximated by

rk+1 = rk −Gk(Ckrk − dk)

where
Gk ≈ (Φ′ΞΦ)−1

This is the LSPE (Least Squares Policy Evalua-
tion) Method.

• Key fact: Ck, dk, and Gk can be computed
with low-dimensional linear algebra (of order s;
the number of basis functions).



SIMULATION MECHANICS

• We generate an infinitely long trajectory (i0, i1, . . .)
of the Markov chain, so states i and transitions
(i, j) appear with long-term frequencies ξi and pij .

• After generating each transition (it, it+1), we
compute the row φ(it)′ of Φ and the cost compo-
nent g(it, it+1).

• We form

dk =
1

k + 1

k
∑

t=0

φ(it)g(it, it+1) ≈
∑

i,j

ξipijφ(i)g(i, j) = Φ′Ξg = d

Ck =
1

k + 1

k
∑

t=0

φ(it)
(

φ(it)−αφ(it+1)
)′

≈ Φ′Ξ(I−αP )Φ = C

Also in the case of LSPE

Gk =
1

k + 1

k
∑

t=0

φ(it)φ(it)′ ≈ Φ′ΞΦ

• Convergence based on law of large numbers.

• Ck, dk, and Gk can be formed incrementally.
Also can be written using the formalism of tem-
poral differences (this is just a matter of style)



OPTIMISTIC VERSIONS

• Instead of calculating nearly exact approxima-
tions Ck ≈ C and dk ≈ d, we do a less accurate
approximation, based on few simulation samples

• Evaluate (coarsely) current policy µ, then do a
policy improvement

• This often leads to faster computation (as op-
timistic methods often do)

• Very complex behavior (see the subsequent dis-
cussion on oscillations)

• The matrix inversion/LSTD method has serious
problems due to large simulation noise (because of
limited sampling) - particularly if the C matrix is
ill-conditioned

• LSPE tends to cope better because of its itera-
tive nature (this is true of other iterative methods
as well)

• A stepsize γ ∈ (0, 1] in LSPE may be useful to
damp the effect of simulation noise

rk+1 = rk − γGk(Ckrk − dk)



MULTISTEP PROJECTED EQUATIONS



MULTISTEP METHODS

• Introduce a multistep version of Bellman’s equa-
tion J = T (λ)J , where for λ ∈ [0, 1),

T (λ) = (1− λ)
∞
∑

ℓ=0

λℓT ℓ+1

Geometrically weighted sum of powers of T .

• Note that T ℓ is a contraction with modulus
αℓ, with respect to the weighted Euclidean norm
‖·‖ξ, where ξ is the steady-state probability vector
of the Markov chain.

• Hence T (λ) is a contraction with modulus

αλ = (1− λ)
∞
∑

ℓ=0

αℓ+1λℓ =
α(1− λ)

1− αλ

Note that αλ → 0 as λ → 1

• T ℓ and T (λ) have the same fixed point Jµ and

‖Jµ − Φr∗λ‖ξ ≤ 1
√

1− α2
λ

‖Jµ −ΠJµ‖ξ

where Φr∗λ is the fixed point of ΠT (λ).

• The fixed point Φr∗λ depends on λ.



BIAS-VARIANCE TRADEOFF

Subspace S = {Φr | r ∈ ℜs} Set

Slope Jµ

Simulation error
Simulation error ΠJµ

Simulation error Bias

) λ = 0

= 0 λ = 1 0

. Solution of projected equation Φ

Simulation error Solution of

∗ Φr = ΠT (λ)(Φr)

Φr
∗

λ
:

• Error bound ‖Jµ−Φr∗λ‖ξ ≤ 1√
1−α2

λ

‖Jµ−ΠJµ‖ξ

• As λ ↑ 1, we have αλ ↓ 0, so error bound (and
the quality of approximation) improves as λ ↑ 1.
In fact

lim
λ↑1

Φr∗λ = ΠJµ

• But the simulation noise in approximating

T (λ) = (1− λ)

∞
∑

ℓ=0

λℓT ℓ+1

increases

• Choice of λ is usually based on trial and error



MULTISTEP PROJECTED EQ. METHODS

• The projected Bellman equation is

Φr = ΠT (λ)(Φr)

• In matrix form: C(λ)r = d(λ), where

C(λ) = Φ′Ξ
(

I − αP (λ)
)

Φ, d(λ) = Φ′Ξg(λ),

with

P (λ) = (1− λ)

∞
∑

ℓ=0

αℓλℓP ℓ+1, g(λ) =

∞
∑

ℓ=0

αℓλℓP ℓg

• The LSTD(λ) method is
(

C
(λ)
k

)−1
d
(λ)
k ,

where C
(λ)
k and d

(λ)
k are simulation-based approx-

imations of C(λ) and d(λ).

• The LSPE(λ) method is

rk+1 = rk − γGk

(

C
(λ)
k rk − d

(λ)
k

)

whereGk is a simulation-based approx. to (Φ′ΞΦ)−1

• TD(λ): An important simpler/slower iteration
[similar to LSPE(λ) with Gk = I - see the text].



MORE ON MULTISTEP METHODS

• The simulation process to obtain C
(λ)
k and d

(λ)
k

is similar to the case λ = 0 (single simulation tra-
jectory i0, i1, . . ., more complex formulas)

C
(λ)
k =

1

k + 1

k
∑

t=0

φ(it)

k
∑

m=t

αm−tλm−t
(

φ(im)−αφ(im+1)
)′

d
(λ)
k =

1

k + 1

k
∑

t=0

φ(it)
k

∑

m=t

αm−tλm−tgim

• In the context of approximate policy iteration,
we can use optimistic versions (few samples be-
tween policy updates).

• Many different versions (see the text).

• Note the λ-tradeoffs:

− As λ ↑ 1, C
(λ)
k and d

(λ)
k contain more “sim-

ulation noise”, so more samples are needed
for a close approximation of rλ (the solution
of the projected equation)

− The error bound ‖Jµ−Φrλ‖ξ becomes smaller

− As λ ↑ 1, ΠT (λ) becomes a contraction for
arbitrary projection norm


