6.231 DYNAMIC PROGRAMMING

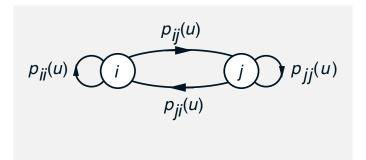
LECTURE 4

LECTURE OUTLINE

- Review of approximation in value space
- Approximate VI and PI
- Projected Bellman equations
- Matrix form of the projected equation
- Simulation-based implementation
- LSTD and LSPE methods
- Optimistic versions
- Multistep projected Bellman equations
- Bias-variance tradeoff

DISCOUNTED MDP

- System: Controlled Markov chain with states i = 1, ..., n, and finite control set U(i) at state i
- Transition probabilities: $p_{ij}(u)$



• Cost of a policy $\pi = \{\mu_0, \mu_1, \ldots\}$ starting at state i:

$$J_{\pi}(i) = \lim_{N \to \infty} E\left\{ \sum_{k=0}^{N} \alpha^{k} g(i_{k}, \mu_{k}(i_{k}), i_{k+1}) \mid i_{0} = i \right\}$$

with $\alpha \in [0,1)$

• Shorthand notation for DP mappings

$$(TJ)(i) = \min_{u \in U(i)} \sum_{j=1}^{n} p_{ij}(u) (g(i, u, j) + \alpha J(j)), \quad i = 1, \dots, n,$$

$$(T_{\mu}J)(i) = \sum_{j=1}^{n} p_{ij}(\mu(i))(g(i,\mu(i),j) + \alpha J(j)), \quad i = 1,\dots, n$$

"SHORTHAND" THEORY – A SUMMARY

• Bellman's equation: $J^* = TJ^*, J_{\mu} = T_{\mu}J_{\mu}$ or

$$J^*(i) = \min_{u \in U(i)} \sum_{j=1}^{n} p_{ij}(u) (g(i, u, j) + \alpha J^*(j)), \quad \forall i$$

$$J_{\mu}(i) = \sum_{j=1}^{n} p_{ij} (\mu(i)) (g(i, \mu(i), j) + \alpha J_{\mu}(j)), \quad \forall i$$

• Optimality condition:

$$\mu$$
: optimal $\langle ==>$ $T_{\mu}J^*=TJ^*$

i.e.,

$$\mu(i) \in \arg\min_{u \in U(i)} \sum_{j=1}^{n} p_{ij}(u) (g(i, u, j) + \alpha J^*(j)), \quad \forall i$$

THE TWO MAIN ALGORITHMS: VI AND PI

• Value iteration: For any $J \in \Re^n$

$$J^*(i) = \lim_{k \to \infty} (T^k J)(i), \qquad \forall i = 1, \dots, n$$

- Policy iteration: Given μ^k
 - Policy evaluation: Find J_{μ^k} by solving

$$J_{\mu^k}(i) = \sum_{j=1}^n p_{ij} (\mu^k(i)) (g(i, \mu^k(i), j) + \alpha J_{\mu^k}(j)), \quad i = 1, \dots, n$$

or
$$J_{\mu^k} = T_{\mu^k} J_{\mu^k}$$

- Policy improvement: Let μ^{k+1} be such that

$$\mu^{k+1}(i) \in \arg\min_{u \in U(i)} \sum_{j=1}^{n} p_{ij}(u) (g(i, u, j) + \alpha J_{\mu^k}(j)), \quad \forall i$$

or
$$T_{\mu^{k+1}}J_{\mu^k} = TJ_{\mu^k}$$

- Policy evaluation is equivalent to solving an $n \times n$ linear system of equations
- For large n, exact PI is out of the question (even though it terminates finitely)

APPROXIMATION IN VALUE SPACE

- Approximate J^* or J_{μ} from a parametric class $\tilde{J}(i;r)$, where i is the current state and $r=(r_1,\ldots,r_s)$ is a vector of "tunable" scalars weights
- Think n: HUGE, s: (Relatively) SMALL
- Many types of approximation architectures [i.e., parametric classes $\tilde{J}(i;r)$] to select from
- Any $r \in \Re^s$ defines a (suboptimal) one-step lookahead policy

$$\tilde{\mu}(i) = \arg\min_{u \in U(i)} \sum_{j=1}^{n} p_{ij}(u) (g(i, u, j) + \alpha \tilde{J}(j; r)), \quad \forall i$$

- We want to find a "good" r
- We will focus mostly on linear architectures

$$\tilde{J}(r) = \Phi r$$

where Φ is an $n \times s$ matrix whose columns are viewed as basis functions

LINEAR APPROXIMATION ARCHITECTURES

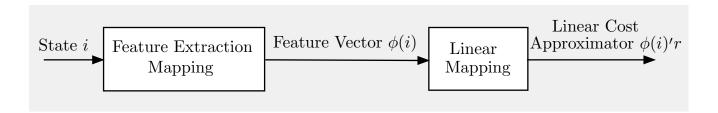
• We have

$$\tilde{J}(i;r) = \phi(i)'r, \qquad i = 1, \dots, n$$

where $\phi(i)'$, i = 1, ..., n is the *i*th row of Φ , or

$$\tilde{J}(r) = \Phi r = \sum_{j=1}^{s} \Phi_j r_j$$

where Φ_j is the jth column of Φ

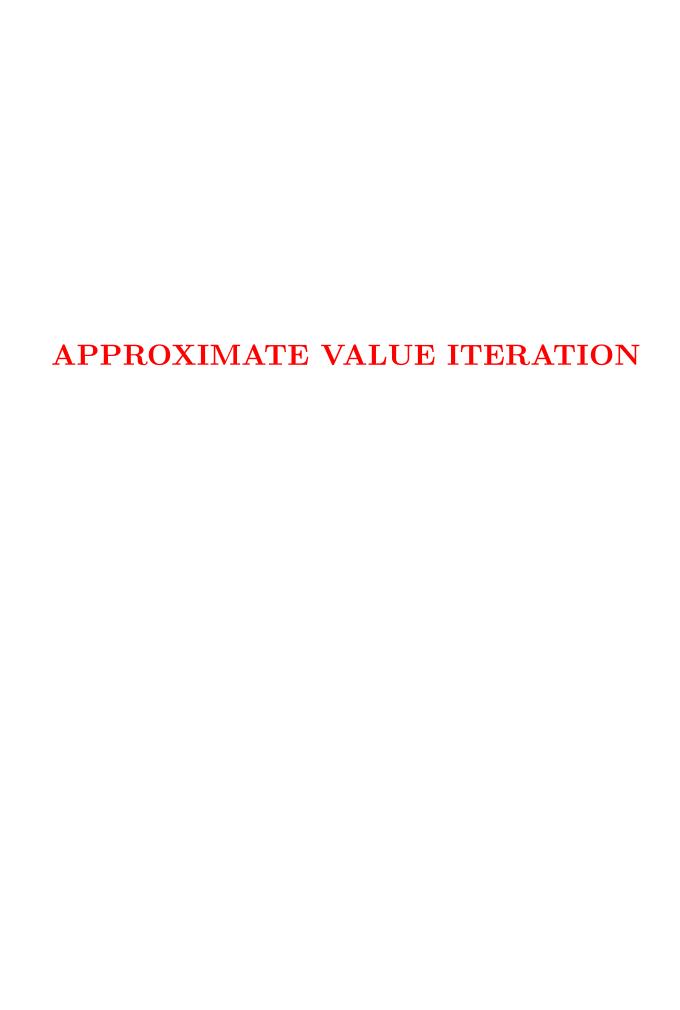


• This is approximation on the subspace

$$S = \{ \Phi r \mid r \in \Re^s \}$$

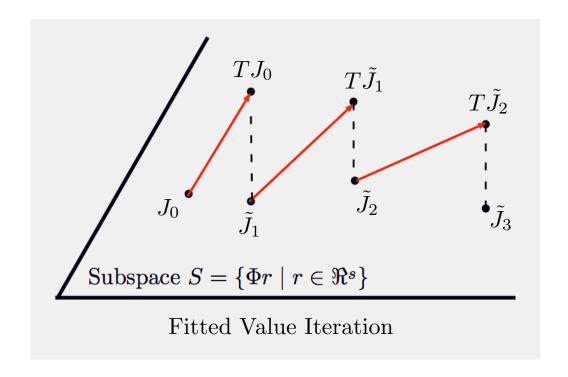
spanned by the columns of Φ (basis functions)

- Many examples of feature types: Polynomial approximation, radial basis functions, etc
- Instead of computing J_{μ} or J^* , which is huge-dimensional, we compute the low-dimensional $r = (r_1, \ldots, r_s)$ using low-dimensional calculations



APPROXIMATE (FITTED) VI

- Approximates sequentially $J_k(i) = (T^k J_0)(i)$, $k = 1, 2, ..., \text{ with } \tilde{J}_k(i; r_k)$
- The starting function J_0 is given (e.g., $J_0 \equiv 0$)
- Approximate (Fitted) Value Iteration: A sequential "fit" to produce \tilde{J}_{k+1} from \tilde{J}_k , i.e., $\tilde{J}_{k+1} \approx T\tilde{J}_k$ or (for a single policy μ) $\tilde{J}_{k+1} \approx T_{\mu}\tilde{J}_k$



- After a large enough number N of steps, $\tilde{J}_N(i; r_N)$ is used as approximation $\tilde{J}(i; r)$ to $J^*(i)$
- Possibly use (approximate) projection Π with respect to some projection norm,

$$\tilde{J}_{k+1} \approx \Pi T \tilde{J}_k$$

WEIGHTED EUCLIDEAN PROJECTIONS

• Consider a weighted Euclidean norm

$$||J||_{\xi} = \sqrt{\sum_{i=1}^{n} \xi_i (J(i))^2},$$

where $\xi = (\xi_1, \dots, \xi_n)$ is a positive distribution $(\xi_i > 0 \text{ for all } i)$.

• Let Π denote the projection operation onto

$$S = \{ \Phi r \mid r \in \Re^s \}$$

with respect to this norm, i.e., for any $J \in \Re^n$,

$$\Pi J = \Phi r^*$$

where

$$r^* = \arg\min_{r \in \Re^s} \|\Phi r - J\|_{\xi}^2$$

• Recall that weighted Euclidean projection can be implemented by simulation and least squares, i.e., sampling J(i) according to ξ and solving

$$\min_{r \in \Re^s} \sum_{t=1}^{\infty} \left(\phi(i_t)'r - J(i_t) \right)^2$$

FITTED VI - NAIVE IMPLEMENTATION

- Select/sample a "small" subset I_k of representative states
- For each $i \in I_k$, given \tilde{J}_k , compute

$$(T\tilde{J}_k)(i) = \min_{u \in U(i)} \sum_{j=1}^n p_{ij}(u) \left(g(i, u, j) + \alpha \tilde{J}_k(j; r) \right)$$

- "Fit" the function $\tilde{J}_{k+1}(i; r_{k+1})$ to the "small" set of values $(T\tilde{J}_k)(i)$, $i \in I_k$ (for example use some form of approximate projection)
- Simulation can be used for "model-free" implementation
- Error Bound: If the fit is uniformly accurate within $\delta > 0$, i.e.,

$$\max_{i} |\tilde{J}_{k+1}(i) - T\tilde{J}_k(i)| \le \delta,$$

then

$$\lim \sup_{k \to \infty} \max_{i=1,\dots,n} \left(\tilde{J}_k(i, r_k) - J^*(i) \right) \le \frac{2\alpha\delta}{(1-\alpha)^2}$$

• But there is a potential problem!

AN EXAMPLE OF FAILURE

- Consider two-state discounted MDP with states 1 and 2, and a single policy.
 - Deterministic transitions: $1 \rightarrow 2$ and $2 \rightarrow 2$
 - Transition costs $\equiv 0$, so $J^*(1) = J^*(2) = 0$.
- Consider (exact) fitted VI scheme that approximates cost functions within $S = \{(r, 2r) \mid r \in \Re\}$ with a weighted least squares fit; here $\Phi = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$
- Given $\tilde{J}_k = (r_k, 2r_k)$, we find $\tilde{J}_{k+1} = (r_{k+1}, 2r_{k+1})$, where $\tilde{J}_{k+1} = \Pi_{\xi}(T\tilde{J}_k)$, with weights $\xi = (\xi_1, \xi_2)$:

$$r_{k+1} = \arg\min_{r} \left[\xi_1 \left(r - (T\tilde{J}_k)(1) \right)^2 + \xi_2 \left(2r - (T\tilde{J}_k)(2) \right)^2 \right]$$

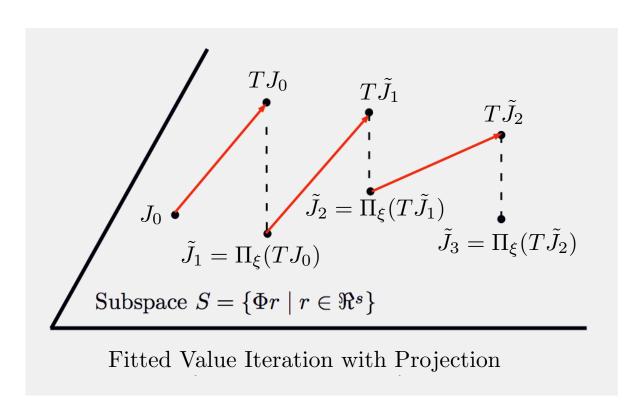
• With straightforward calculation

$$r_{k+1} = \alpha \beta r_k$$
, where $\beta = 2(\xi_1 + 2\xi_2)/(\xi_1 + 4\xi_2) > 1$

- So if $\alpha > 1/\beta$ (e.g., $\xi_1 = \xi_2 = 1$), the sequence $\{r_k\}$ diverges and so does $\{\tilde{J}_k\}$.
- Difficulty is that T is a contraction, but $\Pi_{\xi}T$ (= least squares fit composed with T) is not.

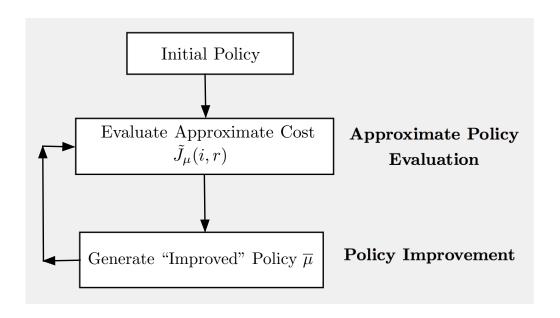
NORM MISMATCH PROBLEM

• For the method to converge, we need $\Pi_{\xi}T$ to be a contraction; the contraction property of T is not enough



- We need a vector of weights ξ such that T is a contraction with respect to the weighted Euclidean norm $\|\cdot\|_{\xi}$
- Then we can show that $\Pi_{\xi}T$ is a contraction with respect to $\|\cdot\|_{\xi}$
- We will come back to this issue

APPROXIMATE PI



- Evaluation of typical policy μ : Linear cost function approximation $\tilde{J}_{\mu}(r) = \Phi r$, where Φ is full rank $n \times s$ matrix with columns the basis functions, and *i*th row denoted $\phi(i)'$.
- Policy "improvement" to generate $\overline{\mu}$:

$$\overline{\mu}(i) = \arg\min_{u \in U(i)} \sum_{j=1}^{n} p_{ij}(u) \left(g(i, u, j) + \alpha \phi(j)'r \right)$$

• Error Bound (same as approximate VI): If

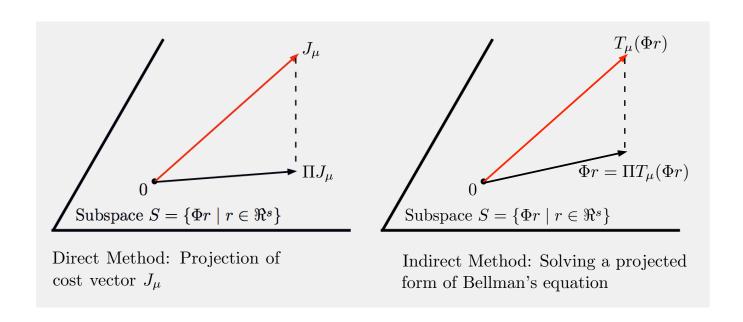
$$\max_{i} |\tilde{J}_{\mu^k}(i, r_k) - J_{\mu^k}(i)| \le \delta, \qquad k = 0, 1, \dots$$

the sequence $\{\mu^k\}$ satisfies

$$\limsup_{k \to \infty} \max_{i} \left(J_{\mu^k}(i) - J^*(i) \right) \le \frac{2\alpha\delta}{(1 - \alpha)^2}$$

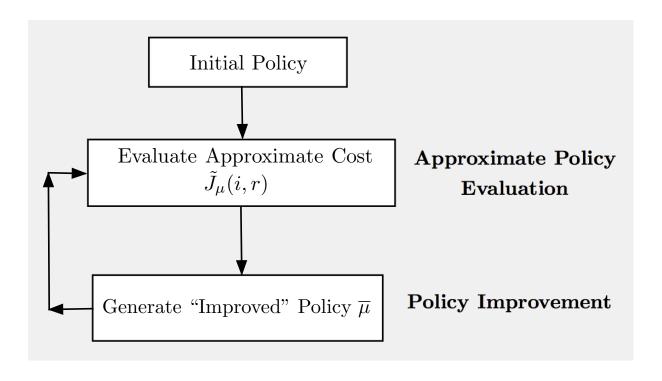
POLICY EVALUATION

- Let's consider approximate evaluation of the cost of the current policy by using simulation.
 - Direct policy evaluation Cost samples generated by simulation, and optimization by least squares
 - Indirect policy evaluation solving the projected equation $\Phi r = \Pi T_{\mu}(\Phi r)$ where Π is projection w/ respect to a suitable weighted Euclidean norm



• Recall that projection can be implemented by simulation and least squares

PI WITH INDIRECT POLICY EVALUATION



- Given the current policy μ :
 - We solve the projected Bellman's equation

$$\Phi r = \Pi T_{\mu}(\Phi r)$$

- We approximate the solution J_{μ} of Bellman's equation

$$J = T_{\mu}J$$

with the projected equation solution $\tilde{J}_{\mu}(r)$

KEY QUESTIONS AND RESULTS

- Does the projected equation have a solution?
- Under what conditions is the mapping ΠT_{μ} a contraction, so ΠT_{μ} has unique fixed point?
- Assumption: The Markov chain corresponding to μ has a single recurrent class and no transient states, i.e., it has steady-state probabilities that are positive

$$\xi_j = \lim_{N \to \infty} \frac{1}{N} \sum_{k=1}^{N} P(i_k = j \mid i_0 = i) > 0$$

Note that ξ_j is the long-term frequency of state j.

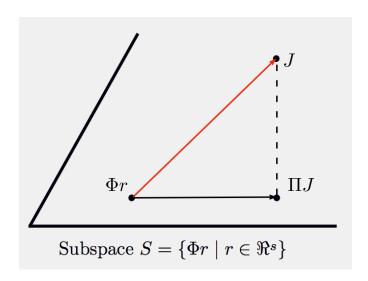
- Proposition: (Norm Matching Property) Assume that the projection Π is with respect to $\|\cdot\|_{\xi}$, where $\xi = (\xi_1, \dots, \xi_n)$ is the steady-state probability vector. Then:
 - (a) ΠT_{μ} is contraction of modulus α with respect to $\|\cdot\|_{\xi}$.
 - (b) The unique fixed point Φr^* of ΠT_{μ} satisfies

$$||J_{\mu} - \Phi r^*||_{\xi} \le \frac{1}{\sqrt{1 - \alpha^2}} ||J_{\mu} - \Pi J_{\mu}||_{\xi}$$

PRELIMINARIES: PROJECTION PROPERTIES

• Important property of the projection Π on S with weighted Euclidean norm $\|\cdot\|_{\xi}$. For all $J \in \Re^n$, $\Phi r \in S$, the Pythagorean Theorem holds:

$$||J - \Phi r||_{\xi}^2 = ||J - \Pi J||_{\xi}^2 + ||\Pi J - \Phi r||_{\xi}^2$$



• The Pythagorean Theorem implies that the projection is nonexpansive, i.e.,

$$\|\Pi J - \Pi \overline{J}\|_{\xi} \le \|J - \overline{J}\|_{\xi}, \quad \text{for all } J, \overline{J} \in \Re^n.$$

To see this, note that

$$\begin{split} \left\|\Pi(J-\overline{J})\right\|_{\xi}^{2} &\leq \left\|\Pi(J-\overline{J})\right\|_{\xi}^{2} + \left\|(I-\Pi)(J-\overline{J})\right\|_{\xi}^{2} \\ &= \|J-\overline{J}\|_{\xi}^{2} \end{split}$$

PROOF OF CONTRACTION PROPERTY

• Lemma: If P is the transition matrix of μ ,

$$||Pz||_{\xi} \le ||z||_{\xi}, \qquad z \in \Re^n$$

Proof: Let p_{ij} be the components of P. For all $z \in \mathbb{R}^n$, we have

$$||Pz||_{\xi}^{2} = \sum_{i=1}^{n} \xi_{i} \left(\sum_{j=1}^{n} p_{ij} z_{j} \right)^{2} \leq \sum_{i=1}^{n} \xi_{i} \sum_{j=1}^{n} p_{ij} z_{j}^{2}$$

$$= \sum_{j=1}^{n} \sum_{i=1}^{n} \xi_{i} p_{ij} z_{j}^{2} = \sum_{j=1}^{n} \xi_{j} z_{j}^{2} = ||z||_{\xi}^{2},$$

where the inequality follows from the convexity of the quadratic function, and the next to last equality follows from the defining property $\sum_{i=1}^{n} \xi_i p_{ij} = \xi_j$ of the steady-state probabilities.

• Using the lemma, the nonexpansiveness of Π , and the definition $T_{\mu}J = g + \alpha PJ$, we have

$$\|\Pi T_{\mu} J - \Pi T_{\mu} \bar{J}\|_{\xi} \le \|T_{\mu} J - T_{\mu} \bar{J}\|_{\xi} = \alpha \|P(J - \bar{J})\|_{\xi} \le \alpha \|J - \bar{J}\|_{\xi}$$

for all $J, \bar{J} \in \mathbb{R}^n$. Hence ΠT_{μ} is a contraction of modulus α .

PROOF OF ERROR BOUND

• Let Φr^* be the fixed point of ΠT . We have

$$||J_{\mu} - \Phi r^*||_{\xi} \le \frac{1}{\sqrt{1 - \alpha^2}} ||J_{\mu} - \Pi J_{\mu}||_{\xi}.$$

Proof: We have

$$||J_{\mu} - \Phi r^*||_{\xi}^2 = ||J_{\mu} - \Pi J_{\mu}||_{\xi}^2 + ||\Pi J_{\mu} - \Phi r^*||_{\xi}^2$$

$$= ||J_{\mu} - \Pi J_{\mu}||_{\xi}^2 + ||\Pi T J_{\mu} - \Pi T (\Phi r^*)||_{\xi}^2$$

$$\leq ||J_{\mu} - \Pi J_{\mu}||_{\xi}^2 + \alpha^2 ||J_{\mu} - \Phi r^*||_{\xi}^2,$$

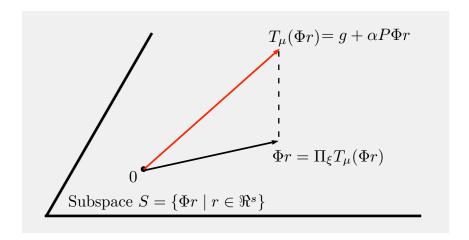
where

- The first equality uses the Pythagorean Theorem
- The second equality holds because J_{μ} is the fixed point of T and Φr^* is the fixed point of ΠT
- The inequality uses the contraction property of ΠT .

Q.E.D.

SIMULATION-BASED SOLUTION OF PROJECTED EQUATION

MATRIX FORM OF PROJECTED EQUATION



• The solution Φr^* satisfies the orthogonality condition: The error

$$\Phi r^* - (g + \alpha P \Phi r^*)$$

is "orthogonal" to the subspace spanned by the columns of Φ .

• This is written as

$$\Phi'\Xi(\Phi r^* - (g + \alpha P\Phi r^*)) = 0,$$

where Ξ is the diagonal matrix with the steadystate probabilities ξ_1, \ldots, ξ_n along the diagonal.

• Equivalently, $Cr^* = d$, where

$$C = \Phi' \Xi (I - \alpha P) \Phi, \qquad d = \Phi' \Xi g$$

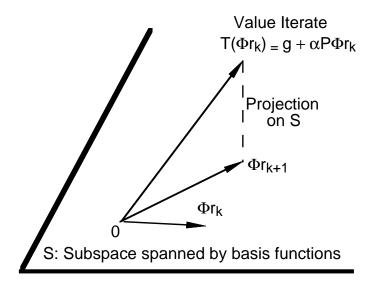
but computing C and d is HARD (high-dimensional inner products).

SOLUTION OF PROJECTED EQUATION

- Solve $Cr^* = d$ by matrix inversion: $r^* = C^{-1}d$
- Projected Value Iteration (PVI) method:

$$\Phi r_{k+1} = \Pi T(\Phi r_k) = \Pi(g + \alpha P \Phi r_k)$$

Converges to r^* because ΠT is a contraction.



• PVI can be written as:

$$r_{k+1} = \arg\min_{r \in \mathbb{R}^s} \left\| \Phi r - (g + \alpha P \Phi r_k) \right\|_{\xi}^{2}$$

By setting to 0 the gradient with respect to r,

$$\Phi'\Xi(\Phi r_{k+1} - (g + \alpha P\Phi r_k)) = 0,$$

which yields

$$r_{k+1} = r_k - (\Phi' \Xi \Phi)^{-1} (Cr_k - d)$$

SIMULATION-BASED IMPLEMENTATIONS

• Key idea: Calculate simulation-based approximations based on k samples

$$C_k \approx C, \qquad d_k \approx d$$

• Matrix inversion $r^* = C^{-1}d$ is approximated by

$$\hat{r}_k = C_k^{-1} d_k$$

This is the LSTD (Least Squares Temporal Differences) Method.

• PVI method $r_{k+1} = r_k - (\Phi' \Xi \Phi)^{-1} (Cr_k - d)$ is approximated by

$$r_{k+1} = r_k - G_k(C_k r_k - d_k)$$

where

$$G_k \approx (\Phi' \Xi \Phi)^{-1}$$

This is the LSPE (Least Squares Policy Evaluation) Method.

• Key fact: C_k , d_k , and G_k can be computed with low-dimensional linear algebra (of order s; the number of basis functions).

SIMULATION MECHANICS

- We generate an infinitely long trajectory $(i_0, i_1, ...)$ of the Markov chain, so states i and transitions (i, j) appear with long-term frequencies ξ_i and p_{ij} .
- After generating each transition (i_t, i_{t+1}) , we compute the row $\phi(i_t)'$ of Φ and the cost component $g(i_t, i_{t+1})$.
- We form

$$d_k = \frac{1}{k+1} \sum_{t=0}^k \phi(i_t) g(i_t, i_{t+1}) \approx \sum_{i,j} \xi_i p_{ij} \phi(i) g(i,j) = \Phi' \Xi g = d$$

$$C_k = \frac{1}{k+1} \sum_{t=0}^k \phi(i_t) \left(\phi(i_t) - \alpha \phi(i_{t+1}) \right)' \approx \Phi' \Xi(I - \alpha P) \Phi = C$$

Also in the case of LSPE

$$G_k = \frac{1}{k+1} \sum_{t=0}^k \phi(i_t) \phi(i_t)' \approx \Phi' \Xi \Phi$$

- Convergence based on law of large numbers.
- C_k , d_k , and G_k can be formed incrementally. Also can be written using the formalism of temporal differences (this is just a matter of style)

OPTIMISTIC VERSIONS

- Instead of calculating nearly exact approximations $C_k \approx C$ and $d_k \approx d$, we do a less accurate approximation, based on few simulation samples
- Evaluate (coarsely) current policy μ , then do a policy improvement
- This often leads to faster computation (as optimistic methods often do)
- Very complex behavior (see the subsequent discussion on oscillations)
- The matrix inversion/LSTD method has serious problems due to large simulation noise (because of limited sampling) particularly if the *C* matrix is ill-conditioned
- LSPE tends to cope better because of its iterative nature (this is true of other iterative methods as well)
- A stepsize $\gamma \in (0,1]$ in LSPE may be useful to damp the effect of simulation noise

$$r_{k+1} = r_k - \gamma G_k (C_k r_k - d_k)$$

MULTISTEP METHODS

• Introduce a multistep version of Bellman's equation $J = T^{(\lambda)}J$, where for $\lambda \in [0, 1)$,

$$T^{(\lambda)} = (1 - \lambda) \sum_{\ell=0}^{\infty} \lambda^{\ell} T^{\ell+1}$$

Geometrically weighted sum of powers of T.

- Note that T^{ℓ} is a contraction with modulus α^{ℓ} , with respect to the weighted Euclidean norm $\|\cdot\|_{\xi}$, where ξ is the steady-state probability vector of the Markov chain.
- Hence $T^{(\lambda)}$ is a contraction with modulus

$$\alpha_{\lambda} = (1 - \lambda) \sum_{\ell=0}^{\infty} \alpha^{\ell+1} \lambda^{\ell} = \frac{\alpha(1 - \lambda)}{1 - \alpha\lambda}$$

Note that $\alpha_{\lambda} \to 0$ as $\lambda \to 1$

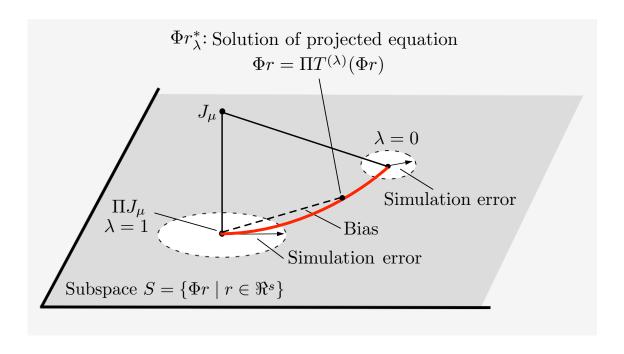
• T^{ℓ} and $T^{(\lambda)}$ have the same fixed point J_{μ} and

$$||J_{\mu} - \Phi r_{\lambda}^{*}||_{\xi} \le \frac{1}{\sqrt{1 - \alpha_{\lambda}^{2}}} ||J_{\mu} - \Pi J_{\mu}||_{\xi}$$

where Φr_{λ}^* is the fixed point of $\Pi T^{(\lambda)}$.

• The fixed point Φr_{λ}^* depends on λ .

BIAS-VARIANCE TRADEOFF



- Error bound $||J_{\mu} \Phi r_{\lambda}^*||_{\xi} \le \frac{1}{\sqrt{1-\alpha_{\lambda}^2}} ||J_{\mu} \Pi J_{\mu}||_{\xi}$
- As $\lambda \uparrow 1$, we have $\alpha_{\lambda} \downarrow 0$, so error bound (and the quality of approximation) improves as $\lambda \uparrow 1$. In fact

$$\lim_{\lambda \uparrow 1} \Phi r_{\lambda}^* = \Pi J_{\mu}$$

• But the simulation noise in approximating

$$T^{(\lambda)} = (1 - \lambda) \sum_{\ell=0}^{\infty} \lambda^{\ell} T^{\ell+1}$$

increases

• Choice of λ is usually based on trial and error

MULTISTEP PROJECTED EQ. METHODS

• The projected Bellman equation is

$$\Phi r = \Pi T^{(\lambda)}(\Phi r)$$

• In matrix form: $C^{(\lambda)}r = d^{(\lambda)}$, where

$$C^{(\lambda)} = \Phi' \Xi (I - \alpha P^{(\lambda)}) \Phi, \qquad d^{(\lambda)} = \Phi' \Xi g^{(\lambda)},$$

with

$$P^{(\lambda)} = (1 - \lambda) \sum_{\ell=0}^{\infty} \alpha^{\ell} \lambda^{\ell} P^{\ell+1}, \quad g^{(\lambda)} = \sum_{\ell=0}^{\infty} \alpha^{\ell} \lambda^{\ell} P^{\ell} g$$

• The LSTD(λ) method is

$$\left(C_k^{(\lambda)}\right)^{-1} d_k^{(\lambda)},$$

where $C_k^{(\lambda)}$ and $d_k^{(\lambda)}$ are simulation-based approximations of $C^{(\lambda)}$ and $d^{(\lambda)}$.

• The LSPE(λ) method is

$$r_{k+1} = r_k - \gamma G_k \left(C_k^{(\lambda)} r_k - d_k^{(\lambda)} \right)$$

where G_k is a simulation-based approx. to $(\Phi'\Xi\Phi)^{-1}$

• $TD(\lambda)$: An important simpler/slower iteration [similar to LSPE(λ) with $G_k = I$ - see the text].

MORE ON MULTISTEP METHODS

• The simulation process to obtain $C_k^{(\lambda)}$ and $d_k^{(\lambda)}$ is similar to the case $\lambda = 0$ (single simulation trajectory i_0, i_1, \ldots , more complex formulas)

$$C_k^{(\lambda)} = \frac{1}{k+1} \sum_{t=0}^{k} \phi(i_t) \sum_{m=t}^{k} \alpha^{m-t} \lambda^{m-t} (\phi(i_m) - \alpha \phi(i_{m+1}))'$$

$$d_k^{(\lambda)} = \frac{1}{k+1} \sum_{t=0}^k \phi(i_t) \sum_{m=t}^k \alpha^{m-t} \lambda^{m-t} g_{i_m}$$

- In the context of approximate policy iteration, we can use optimistic versions (few samples between policy updates).
- Many different versions (see the text).
- Note the λ -tradeoffs:
 - As $\lambda \uparrow 1$, $C_k^{(\lambda)}$ and $d_k^{(\lambda)}$ contain more "simulation noise", so more samples are needed for a close approximation of r_{λ} (the solution of the projected equation)
 - The error bound $||J_{\mu} \Phi r_{\lambda}||_{\xi}$ becomes smaller
 - As $\lambda \uparrow 1$, $\Pi T^{(\lambda)}$ becomes a contraction for arbitrary projection norm