
6.231 DYNAMIC PROGRAMMING

LECTURE 4

LECTURE OUTLINE

• Review of approximation in value space

• Approximate VI and PI

• Projected Bellman equations

• Matrix form of the projected equation

• Simulation-based implementation

• LSTD and LSPE methods

• Optimistic versions

• Multistep projected Bellman equations

• Bias-variance tradeoff

REVIEW

DISCOUNTED MDP

• System: Controlled Markov chain with states
i = 1, . . . , n, and finite control set U(i) at state i

• Transition probabilities: pij(u)

i j

pij(u)

pii(u) p jj(u)

pji(u)

• Cost of a policy π = {µ0, µ1, . . .} starting at
state i:

Jπ(i) = lim
N→∞

E

{

N
∑

k=0

αkg
(

ik, µk(ik), ik+1

)

| i0 = i

}

with α ∈ [0, 1)

• Shorthand notation for DP mappings

(TJ)(i) = min
u∈U(i)

n
∑

j=1

pij(u)
(

g(i, u, j)+αJ(j)
)

, i = 1, . . . , n,

(TµJ)(i) =

n
∑

j=1

pij
(

µ(i)
)(

g
(

i, µ(i), j
)

+αJ(j)
)

, i = 1, . . . , n

“SHORTHAND” THEORY – A SUMMARY

• Bellman’s equation: J∗ = TJ∗, Jµ = TµJµ or

J∗(i) = min
u∈U(i)

n
∑

j=1

pij(u)
(

g(i, u, j)+αJ∗(j)
)

, ∀ i

Jµ(i) =
n
∑

j=1

pij
(

µ(i)
)(

g
(

i, µ(i), j
)

+ αJµ(j)
)

, ∀ i

• Optimality condition:

µ: optimal <==> TµJ∗ = TJ∗

i.e.,

µ(i) ∈ arg min
u∈U(i)

n
∑

j=1

pij(u)
(

g(i, u, j)+αJ∗(j)
)

, ∀ i

THE TWO MAIN ALGORITHMS: VI AND PI

• Value iteration: For any J ∈ ℜn

J∗(i) = lim
k→∞

(T kJ)(i), ∀ i = 1, . . . , n

• Policy iteration: Given µk

− Policy evaluation: Find Jµk by solving

Jµk (i) =

n
∑

j=1

pij
(

µ
k(i)

)(

g
(

i, µ
k(i), j

)

+αJµk (j)
)

, i = 1, . . . , n

or Jµk = TµkJµk

− Policy improvement: Let µk+1 be such that

µ
k+1(i) ∈ arg min

u∈U(i)

n
∑

j=1

pij(u)
(

g(i, u, j)+αJµk (j)
)

, ∀ i

or Tµk+1Jµk = TJµk

• Policy evaluation is equivalent to solving an
n× n linear system of equations

• For large n, exact PI is out of the question
(even though it terminates finitely)

APPROXIMATION IN VALUE SPACE

• Approximate J∗ or Jµ from a parametric class
J̃(i; r), where i is the current state and r = (r1, . . . , rs)
is a vector of “tunable” scalars weights

• Think n: HUGE, s: (Relatively) SMALL

• Many types of approximation architectures [i.e.,
parametric classes J̃(i; r)] to select from

• Any r ∈ ℜs defines a (suboptimal) one-step
lookahead policy

µ̃(i) = arg min
u∈U(i)

n
∑

j=1

pij(u)
(

g(i, u, j)+αJ̃(j; r)
)

, ∀ i

• We want to find a “good” r

• We will focus mostly on linear architectures

J̃(r) = Φr

where Φ is an n × s matrix whose columns are
viewed as basis functions

LINEAR APPROXIMATION ARCHITECTURES

• We have

J̃(i; r) = φ(i)′r, i = 1, . . . , n

where φ(i)′, i = 1, . . . , n is the ith row of Φ, or

J̃(r) = Φr =
s

∑

j=1

Φjrj

where Φj is the jth column of Φ

State i

Approximator
i Feature Extraction Mapping Feature Vector

Approximator ()Feature Extraction Mapping Feature VectorFeature Extraction Mapping Feature Vector

Feature Extraction Mapping Feature Vector φ(i) Linear Cost
i) Linear Cost

i) Linear Cost
Approximator φ(i)′r

• This is approximation on the subspace

S = {Φr | r ∈ ℜs}
spanned by the columns of Φ (basis functions)

• Many examples of feature types: Polynomial
approximation, radial basis functions, etc

• Instead of computing Jµ or J∗, which is huge-
dimensional, we compute the low-dimensional r =
(r1, . . . , rs) using low-dimensional calculations

APPROXIMATE VALUE ITERATION

APPROXIMATE (FITTED) VI

• Approximates sequentially Jk(i) = (T kJ0)(i),
k = 1, 2, . . ., with J̃k(i; rk)

• The starting function J0 is given (e.g., J0 ≡ 0)

• Approximate (Fitted) Value Iteration: A se-
quential “fit” to produce J̃k+1 from J̃k, i.e., J̃k+1 ≈
T J̃k or (for a single policy µ) J̃k+1 ≈ TµJ̃k

Subspace S = {Φr | r ∈ ℜs} Set

Fitted Value Iteration
{

Fitted Value Iteration J0

0 TJ0
}

0 J̃1
}

˜
1 T J̃1

1 J̃2

˜
2 T J̃2

˜
2 J̃3

• After a large enough numberN of steps, J̃N (i; rN)
is used as approximation J̃(i; r) to J∗(i)

• Possibly use (approximate) projection Π with
respect to some projection norm,

J̃k+1 ≈ ΠT J̃k

WEIGHTED EUCLIDEAN PROJECTIONS

• Consider a weighted Euclidean norm

‖J‖ξ =

√

√

√

√

n
∑

i=1

ξi
(

J(i)
)2
,

where ξ = (ξ1, . . . , ξn) is a positive distribution
(ξi > 0 for all i).

• Let Π denote the projection operation onto

S = {Φr | r ∈ ℜs}

with respect to this norm, i.e., for any J ∈ ℜn,

ΠJ = Φr∗

where
r∗ = arg min

r∈ℜs

‖Φr − J‖2ξ

• Recall that weighted Euclidean projection can
be implemented by simulation and least squares,
i.e., sampling J(i) according to ξ and solving

min
r∈ℜs

k
∑

t=1

(

φ(it)′r − J(it)
)2

FITTED VI - NAIVE IMPLEMENTATION

• Select/sample a “small” subset Ik of represen-
tative states

• For each i ∈ Ik, given J̃k, compute

(T J̃k)(i) = min
u∈U(i)

n
∑

j=1

pij(u)
(

g(i, u, j) + αJ̃k(j; r)
)

• “Fit” the function J̃k+1(i; rk+1) to the “small”
set of values (T J̃k)(i), i ∈ Ik (for example use
some form of approximate projection)

• Simulation can be used for “model-free” imple-
mentation

• Error Bound: If the fit is uniformly accurate
within δ > 0, i.e.,

max
i

|J̃k+1(i)− T J̃k(i)| ≤ δ,

then

lim sup
k→∞

max
i=1,...,n

(

J̃k(i, rk)− J∗(i)
)

≤ 2αδ

(1− α)2

• But there is a potential problem!

AN EXAMPLE OF FAILURE

• Consider two-state discounted MDP with states
1 and 2, and a single policy.

− Deterministic transitions: 1 → 2 and 2 → 2

− Transition costs ≡ 0, so J∗(1) = J∗(2) = 0.

• Consider (exact) fitted VI scheme that approx-
imates cost functions within S =

{

(r, 2r) | r ∈ ℜ
}

with a weighted least squares fit; here Φ =

(

1
2

)

• Given J̃k = (rk, 2rk), we find J̃k+1 = (rk+1, 2rk+1),
where J̃k+1 = Πξ(T J̃k), with weights ξ = (ξ1, ξ2):

rk+1 = argmin
r

[

ξ1
(

r−(T J̃k)(1)
)2
+ξ2

(

2r−(T J̃k)(2)
)2
]

• With straightforward calculation

rk+1 = αβrk, where β = 2(ξ1+2ξ2)/(ξ1+4ξ2) > 1

• So if α > 1/β (e.g., ξ1 = ξ2 = 1), the sequence
{rk} diverges and so does {J̃k}.
• Difficulty is that T is a contraction, but ΠξT
(= least squares fit composed with T) is not.

NORM MISMATCH PROBLEM

• For the method to converge, we need ΠξT to
be a contraction; the contraction property of T is
not enough

Subspace S = {Φr | r ∈ ℜs} Set

Fitted Value Iteration J0

0 TJ0
}

˜
1 T J̃1

˜
2 T J̃2

Fitted Value Iteration with Projection J
{ }

0 J̃1 = Πξ(TJ0)

1̃ J̃2 = Πξ(T J̃1)

} 2 J̃3 = Πξ(T J̃2)

• We need a vector of weights ξ such that T is
a contraction with respect to the weighted Eu-
clidean norm ‖ · ‖ξ
• Then we can show that ΠξT is a contraction
with respect to ‖ · ‖ξ
• We will come back to this issue

APPROXIMATE POLICY ITERATION

APPROXIMATE PI

Approximate Policy

Evaluation

Policy ImprovementGenerate “Improved” Policy µ

Initial Policy Controlled System Cost per Stage Vector
tion Matrix ()

i, u, r) J̃µ(i, r)

Evaluate Approximate Cost Steady-State Distribution
Cost ()

• Evaluation of typical policy µ: Linear cost func-
tion approximation J̃µ(r) = Φr, where Φ is full
rank n × s matrix with columns the basis func-
tions, and ith row denoted φ(i)′.

• Policy “improvement” to generate µ:

µ(i) = arg min
u∈U(i)

n
∑

j=1

pij(u)
(

g(i, u, j) + αφ(j)′r
)

• Error Bound (same as approximate VI): If

max
i

|J̃µk(i, rk)− Jµk(i)| ≤ δ, k = 0, 1, . . .

the sequence {µk} satisfies

lim sup
k→∞

max
i

(

Jµk(i)− J∗(i)
)

≤ 2αδ

(1− α)2

POLICY EVALUATION

• Let’s consider approximate evaluation of the
cost of the current policy by using simulation.

− Direct policy evaluation - Cost samples gen-
erated by simulation, and optimization by
least squares

− Indirect policy evaluation - solving the pro-
jected equation Φr = ΠTµ(Φr) where Π is
projection w/ respect to a suitable weighted
Euclidean norm

Subspace S = {Φr | r ∈ ℜs} Set

= 0

Subspace S = {Φr | r ∈ ℜs} Set

= 0

Direct Method: Projection of cost vector Jµ Π

µ ΠJµ

Tµ(Φr)

Φr = ΠTµ(Φr)

Indirect Method: Solving a projected form of Bellman’s equation

Projection onIndirect Method: Solving a projected form of Bellman’s equation

Direct Method: Projection of cost vector
() () ()Direct Method: Projection of cost vector Jµ

• Recall that projection can be implemented by
simulation and least squares

PI WITH INDIRECT POLICY EVALUATION

Approximate Policy

Evaluation

Policy ImprovementGenerate “Improved” Policy µ

Initial Policy Controlled System Cost per Stage Vector
tion Matrix ()

i, u, r) J̃µ(i, r)

Evaluate Approximate Cost Steady-State Distribution
Cost ()

• Given the current policy µ:

− We solve the projected Bellman’s equation

Φr = ΠTµ(Φr)

− We approximate the solution Jµ of Bellman’s
equation

J = TµJ

with the projected equation solution J̃µ(r)

KEY QUESTIONS AND RESULTS

• Does the projected equation have a solution?

• Under what conditions is the mapping ΠTµ a
contraction, so ΠTµ has unique fixed point?

• Assumption: The Markov chain corresponding
to µ has a single recurrent class and no transient
states, i.e., it has steady-state probabilities that
are positive

ξj = lim
N→∞

1

N

N
∑

k=1

P (ik = j | i0 = i) > 0

Note that ξj is the long-term frequency of state j.

• Proposition: (Norm Matching Property) As-
sume that the projection Π is with respect to ‖·‖ξ,
where ξ = (ξ1, . . . , ξn) is the steady-state proba-
bility vector. Then:

(a) ΠTµ is contraction of modulus α with re-
spect to ‖ · ‖ξ.

(b) The unique fixed point Φr∗ of ΠTµ satisfies

‖Jµ − Φr∗‖ξ ≤ 1√
1− α2

‖Jµ −ΠJµ‖ξ

PRELIMINARIES: PROJECTION PROPERTIES

• Important property of the projection Π on S
with weighted Euclidean norm ‖ · ‖ξ. For all J ∈
ℜn, Φr ∈ S, the Pythagorean Theorem holds:

‖J − Φr‖2ξ = ‖J −ΠJ‖2ξ + ‖ΠJ − Φr‖2ξ

Subspace S = {Φr | r ∈ ℜs} Set

r Φr

}

J

J ΠJ

• The Pythagorean Theorem implies that the pro-
jection is nonexpansive, i.e.,

‖ΠJ −ΠJ̄‖ξ ≤ ‖J − J̄‖ξ, for all J, J̄ ∈ ℜn.

To see this, note that

∥

∥Π(J − J)
∥

∥

2

ξ
≤

∥

∥Π(J − J)
∥

∥

2

ξ
+

∥

∥(I −Π)(J − J)
∥

∥

2

ξ

= ‖J − J‖2ξ

PROOF OF CONTRACTION PROPERTY

• Lemma: If P is the transition matrix of µ,

‖Pz‖ξ ≤ ‖z‖ξ, z ∈ ℜn

Proof: Let pij be the components of P . For all
z ∈ ℜn, we have

‖Pz‖2ξ =
n
∑

i=1

ξi





n
∑

j=1

pijzj





2

≤
n
∑

i=1

ξi

n
∑

j=1

pijz2j

=

n
∑

j=1

n
∑

i=1

ξipijz2j =

n
∑

j=1

ξjz2j = ‖z‖2ξ ,

where the inequality follows from the convexity of
the quadratic function, and the next to last equal-
ity follows from the defining property

∑n

i=1 ξipij =
ξj of the steady-state probabilities.

• Using the lemma, the nonexpansiveness of Π,
and the definition TµJ = g + αPJ , we have

‖ΠTµJ−ΠTµJ̄‖ξ ≤ ‖TµJ−TµJ̄‖ξ = α‖P (J−J̄)‖ξ ≤ α‖J−J̄‖ξ

for all J, J̄ ∈ ℜn. Hence ΠTµ is a contraction of
modulus α.

PROOF OF ERROR BOUND

• Let Φr∗ be the fixed point of ΠT . We have

‖Jµ − Φr∗‖ξ ≤ 1√
1− α2

‖Jµ −ΠJµ‖ξ.

Proof: We have

‖Jµ − Φr∗‖2ξ = ‖Jµ −ΠJµ‖2ξ +
∥

∥ΠJµ − Φr∗
∥

∥

2

ξ

= ‖Jµ −ΠJµ‖2ξ +
∥

∥ΠTJµ −ΠT (Φr∗)
∥

∥

2

ξ

≤ ‖Jµ −ΠJµ‖2ξ + α2‖Jµ − Φr∗‖2ξ ,

where

− The first equality uses the Pythagorean The-
orem

− The second equality holds because Jµ is the
fixed point of T and Φr∗ is the fixed point
of ΠT

− The inequality uses the contraction property
of ΠT .

Q.E.D.

SIMULATION-BASED SOLUTION OF

PROJECTED EQUATION

MATRIX FORM OF PROJECTED EQUATION

Subspace S = {Φr | r ∈ ℜs} Set

= 0

Tµ(Φr)= g + αPΦr

r Φr = ΠξTµ(Φr)

• The solution Φr∗ satisfies the orthogonality con-
dition: The error

Φr∗ − (g + αPΦr∗)

is “orthogonal” to the subspace spanned by the
columns of Φ.

• This is written as

Φ′Ξ
(

Φr∗ − (g + αPΦr∗)
)

= 0,

where Ξ is the diagonal matrix with the steady-
state probabilities ξ1, . . . , ξn along the diagonal.

• Equivalently, Cr∗ = d, where

C = Φ′Ξ(I − αP)Φ, d = Φ′Ξg

but computing C and d is HARD (high-dimensional
inner products).

SOLUTION OF PROJECTED EQUATION

• Solve Cr∗ = d by matrix inversion: r∗ = C−1d

• Projected Value Iteration (PVI) method:

Φrk+1 = ΠT (Φrk) = Π(g + αPΦrk)

Converges to r∗ because ΠT is a contraction.

S: Subspace spanned by basis functions

Φrk

T(Φrk) = g + αPΦrk

0

Φrk+1

Value Iterate

Projection
on S

• PVI can be written as:

rk+1 = arg min
r∈ℜs

∥

∥Φr − (g + αPΦrk)
∥

∥

2

ξ

By setting to 0 the gradient with respect to r,

Φ′Ξ
(

Φrk+1 − (g + αPΦrk)
)

= 0,

which yields

rk+1 = rk − (Φ′ΞΦ)−1(Crk − d)

SIMULATION-BASED IMPLEMENTATIONS

• Key idea: Calculate simulation-based approxi-
mations based on k samples

Ck ≈ C, dk ≈ d

• Matrix inversion r∗ = C−1d is approximated
by

r̂k = C−1
k dk

This is the LSTD (Least Squares Temporal Dif-
ferences) Method.

• PVI method rk+1 = rk − (Φ′ΞΦ)−1(Crk − d) is
approximated by

rk+1 = rk −Gk(Ckrk − dk)

where
Gk ≈ (Φ′ΞΦ)−1

This is the LSPE (Least Squares Policy Evalua-
tion) Method.

• Key fact: Ck, dk, and Gk can be computed
with low-dimensional linear algebra (of order s;
the number of basis functions).

SIMULATION MECHANICS

• We generate an infinitely long trajectory (i0, i1, . . .)
of the Markov chain, so states i and transitions
(i, j) appear with long-term frequencies ξi and pij .

• After generating each transition (it, it+1), we
compute the row φ(it)′ of Φ and the cost compo-
nent g(it, it+1).

• We form

dk =
1

k + 1

k
∑

t=0

φ(it)g(it, it+1) ≈
∑

i,j

ξipijφ(i)g(i, j) = Φ′Ξg = d

Ck =
1

k + 1

k
∑

t=0

φ(it)
(

φ(it)−αφ(it+1)
)′

≈ Φ′Ξ(I−αP)Φ = C

Also in the case of LSPE

Gk =
1

k + 1

k
∑

t=0

φ(it)φ(it)′ ≈ Φ′ΞΦ

• Convergence based on law of large numbers.

• Ck, dk, and Gk can be formed incrementally.
Also can be written using the formalism of tem-
poral differences (this is just a matter of style)

OPTIMISTIC VERSIONS

• Instead of calculating nearly exact approxima-
tions Ck ≈ C and dk ≈ d, we do a less accurate
approximation, based on few simulation samples

• Evaluate (coarsely) current policy µ, then do a
policy improvement

• This often leads to faster computation (as op-
timistic methods often do)

• Very complex behavior (see the subsequent dis-
cussion on oscillations)

• The matrix inversion/LSTD method has serious
problems due to large simulation noise (because of
limited sampling) - particularly if the C matrix is
ill-conditioned

• LSPE tends to cope better because of its itera-
tive nature (this is true of other iterative methods
as well)

• A stepsize γ ∈ (0, 1] in LSPE may be useful to
damp the effect of simulation noise

rk+1 = rk − γGk(Ckrk − dk)

MULTISTEP PROJECTED EQUATIONS

MULTISTEP METHODS

• Introduce a multistep version of Bellman’s equa-
tion J = T (λ)J , where for λ ∈ [0, 1),

T (λ) = (1− λ)
∞
∑

ℓ=0

λℓT ℓ+1

Geometrically weighted sum of powers of T .

• Note that T ℓ is a contraction with modulus
αℓ, with respect to the weighted Euclidean norm
‖·‖ξ, where ξ is the steady-state probability vector
of the Markov chain.

• Hence T (λ) is a contraction with modulus

αλ = (1− λ)
∞
∑

ℓ=0

αℓ+1λℓ =
α(1− λ)

1− αλ

Note that αλ → 0 as λ → 1

• T ℓ and T (λ) have the same fixed point Jµ and

‖Jµ − Φr∗λ‖ξ ≤ 1
√

1− α2
λ

‖Jµ −ΠJµ‖ξ

where Φr∗λ is the fixed point of ΠT (λ).

• The fixed point Φr∗λ depends on λ.

BIAS-VARIANCE TRADEOFF

Subspace S = {Φr | r ∈ ℜs} Set

Slope Jµ

Simulation error
Simulation error ΠJµ

Simulation error Bias

) λ = 0

= 0 λ = 1 0

. Solution of projected equation Φ

Simulation error Solution of

∗ Φr = ΠT (λ)(Φr)

Φr
∗

λ
:

• Error bound ‖Jµ−Φr∗λ‖ξ ≤ 1√
1−α2

λ

‖Jµ−ΠJµ‖ξ

• As λ ↑ 1, we have αλ ↓ 0, so error bound (and
the quality of approximation) improves as λ ↑ 1.
In fact

lim
λ↑1

Φr∗λ = ΠJµ

• But the simulation noise in approximating

T (λ) = (1− λ)

∞
∑

ℓ=0

λℓT ℓ+1

increases

• Choice of λ is usually based on trial and error

MULTISTEP PROJECTED EQ. METHODS

• The projected Bellman equation is

Φr = ΠT (λ)(Φr)

• In matrix form: C(λ)r = d(λ), where

C(λ) = Φ′Ξ
(

I − αP (λ)
)

Φ, d(λ) = Φ′Ξg(λ),

with

P (λ) = (1− λ)

∞
∑

ℓ=0

αℓλℓP ℓ+1, g(λ) =

∞
∑

ℓ=0

αℓλℓP ℓg

• The LSTD(λ) method is
(

C
(λ)
k

)−1
d
(λ)
k ,

where C
(λ)
k and d

(λ)
k are simulation-based approx-

imations of C(λ) and d(λ).

• The LSPE(λ) method is

rk+1 = rk − γGk

(

C
(λ)
k rk − d

(λ)
k

)

whereGk is a simulation-based approx. to (Φ′ΞΦ)−1

• TD(λ): An important simpler/slower iteration
[similar to LSPE(λ) with Gk = I - see the text].

MORE ON MULTISTEP METHODS

• The simulation process to obtain C
(λ)
k and d

(λ)
k

is similar to the case λ = 0 (single simulation tra-
jectory i0, i1, . . ., more complex formulas)

C
(λ)
k =

1

k + 1

k
∑

t=0

φ(it)

k
∑

m=t

αm−tλm−t
(

φ(im)−αφ(im+1)
)′

d
(λ)
k =

1

k + 1

k
∑

t=0

φ(it)
k

∑

m=t

αm−tλm−tgim

• In the context of approximate policy iteration,
we can use optimistic versions (few samples be-
tween policy updates).

• Many different versions (see the text).

• Note the λ-tradeoffs:

− As λ ↑ 1, C
(λ)
k and d

(λ)
k contain more “sim-

ulation noise”, so more samples are needed
for a close approximation of rλ (the solution
of the projected equation)

− The error bound ‖Jµ−Φrλ‖ξ becomes smaller

− As λ ↑ 1, ΠT (λ) becomes a contraction for
arbitrary projection norm

