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REVIEW



DISCOUNTED MDP

e System: Controlled Markov chain with states
i =1,...,n, and finite control set U(7) at state ¢

e Transition probabilities: p;;(u)

pii(u)

Piill) ‘0‘0’ pjjlu

pjilu)

e Cost of a policy m = {uo, p1,...} starting at
state ¢:

J(i) = lim E{Zakg(ik,uk(ik),ikﬂ) ER —7;}

N — o0
k=0

with « € [0, 1)
e Shorthand notation for DP mappings



“SHORTHAND” THEORY - A SUMMARY

e DBellman’s equation: J* =TJ*, J, =1,,J, or

n

J* (1) ZUggI(li)me(U)(g(z u,j) +aJ* (), Vi

e Optimality condition:
p: optimal <==> 1T, J*=TJ*

le.,

c ; J)rad (), Vi
u(i) € arg min Zpg (9(i,u, j)+at*(j)), Vi



THE TWO MAIN ALGORITHMS: VI AND PI

e Value iteration: For any J € R»

J*(i) = lim (TkJ)(7), Vi=1,...,n

k— o0

e Policy iteration: Given u*
— Policy evaluation: Find J ,» by solving

= > i (1) (9( 1" (1), 5) vk (7)), i=1,...

or Jluk B TMszMk:

— Policy improvement: Let p*+1! be such that

k—l—l . . .
/*L 6 argurenl}r(lz) pr 7’ u)])+a‘]uk (]))7 \V/Z

or Tlukz+1 J,u"“ = TJMI{:

e Policy evaluation is equivalent to solving an
n X n linear system of equations

e For large n, exact PI is out of the question
(even though it terminates finitely)



APPROXIMATION IN VALUE SPACE

e Approximate J* or J, from a parametric class
J(i;7), where 7 is the current state and r = (r1,...,7s)
is a vector of “tunable” scalars weights

e Think n: HUGE, s: (Relatively) SMALL

e Many types of approximation architectures i.e.,
parametric classes J(i;7)] to select from

e Any r € Rs defines a (suboptimal) one-step
lookahead policy

mn

fi(1) = arg min.)zpz'j(U) (9(3,u, §)+aJ(j;1)), Vi

e We want to find a “good” r

e We will focus mostly on linear architectures
J(r) = or

where ® is an n X s matrix whose columns are
viewed as basis functions



LINEAR APPROXIMATION ARCHITECTURES

e We have
J(i:r) = ¢(@)r, i=1,...,n
where ¢(i)’, i = 1,...,n is the ith row of @, or

J(r) = ®r = Zcbjrj
j=1

where ®; is the jth column of ®

. Linear Cost
State i | Feature Extraction | Feature Vector ¢(i) Linear Approximator ¢(i)'r

Mapping - Mapping >

e This is approximation on the subspace

S={dr|r e Rs}

spanned by the columns of ® (basis functions)

e Many examples of feature types: Polynomial
approximation, radial basis functions, etc

e Instead of computing J,, or J*, which is huge-
dimensional, we compute the low-dimensional r» =
(r1,...,7s) using low-dimensional calculations



APPROXIMATE VALUE ITERATION



APPROXIMATE (FITTED) VI

e Approximates sequentially Jy(i) = (T%Jo)(4),
k=1,2,..., with Ji(i;r)

e The starting function Jy is given (e.g., Jo = 0)

e Approximate (Fitted) Value Iteration: A se-
qugntial “fit” to produce Jx11 fr~om iy, Jgpp1 =
TJy, or (for a single policy p) Jx4+1 ~ T}, Jx

T Jo le
TJs
! I
I | |
I /
! ~ I
JO - J2 ‘jg

J1

Subspace S = {®r | r € Rs}

Fitted Value Iteration

o After alarge enough number N of steps, In(i;7n)
is used as approximation J(¢;r) to J*(¢)

e Possibly use (approximate) projection Il with
respect to some projection norm,

jk_|_1 ~ HTjk



WEIGHTED EUCLIDEAN PROJECTIONS

e (Consider a weighted Euclidean norm

Wl =y > G(I0),

where & = (&1,...,&,) is a positive distribution
(& > 0 for all 7).

e Let II denote the projection operation onto
S={dr|r e Rs}
with respect to this norm, i.e., for any J € R,
IIJ = ®r*

where

r* = arg min

Or — J||?
reRs 4 Hg

e Recall that weighted Euclidean projection can
be implemented by simulation and least squares,
i.e., sampling J (z')kaccording to & and solving
: . S\ 2
min (p(ie)'r — J(ir))

re¥ks
t=1



FITTED VI - NAIVE IMPLEMENTATION

e Select/sample a “small” subset [ of represen-
tative states

e For each ¢ € I, given jk, compute

e “Fit” the function jk;_|_1(7:;'rk;_|_1) to the “small”
set of values (T'Jg)(¢), @ € I (for example use
some form of approximate projection)

e Simulation can be used for “model-free” imple-
mentation

e FError Bound: If the fit is uniformly accurate
within 0 > 0, i.e.,

max [ Jg41(4) — TJy(i)] <9,

then

- 2000
lim ksi];)o Z:lfrllaXn(Jk(%7“k) - J*(Z)) < (1 _Oéa)z

e But there is a potential problem!



AN EXAMPLE OF FAILURE

e (Consider two-state discounted MDP with states
1 and 2, and a single policy.

— Deterministic transitions: 1 — 2 and 2 — 2
— Transition costs = 0, so J*(1) = J*(2) = 0.

e Consider (exact) fitted VI scheme that approx-
imates cost functions within S = {(r,2r) | r € R}

with a weighted least squares fit; here ® = (;)

e Given Jp = (7k, 21 ), we find J~k+1 = (Tk+1, 2Tk11),
where Ji1 = (1)), with weights £ = (&1, &2):

P41 = arg mrin [51 (r—(Tjk)(l))2+§2 (27“—(Tjk)(2))2}
e With straightforward calculation

ri+1 = afrg,  where 8 = 2(§1+282)/(§1+482) > 1

e Soifa> 1/ (e.g., &1 = &2 = 1), the sequence
{rr} diverges and so does {J}.

e Difficulty is that 7' is a contraction, but II:T
(= least squares fit composed with T') is not.



NORM MISMATCH PROBLEM

e Tor the method to converge, we need Il¢1" to
be a contraction; the contraction property of 71" is
not enough

J1 =1 (TJo)
Subspace S = {®r | r € Rs}

Fitted Value Iteration with Projection

e We need a vector of weights & such that T’ is
a contraction with respect to the weighted Eu-
clidean norm || - ||¢

e Then we can show that 111" is a contraction
with respect to || - ||¢

e We will come back to this issue



APPROXIMATE POLICY ITERATION



APPROXIMATE PI

Initial Policy

l

Evaluate Approximate Cost Approximate Policy
) Ju(i,r) Evaluation

|

«—| Generate “Improved” Policy T Policy Improvement

e [Evaluation of typical policy p: Linear cost func-
tion approximation ju(r) — ®r, where & is full
rank n X s matrix with columns the basis func-
tions, and ith row denoted ¢(i)’.

e Policy “improvement” to generate f:

[(7) = arg min sz] g(i,u, j) + ad(j)'r)

ueU (7)

e FError Bound (Same as approximate VI): If
maX’ij(i,Tk)—JMk(i)‘ SCS, k:O,l,...

the sequence {uF} satisfies

. . 2000
hlf:isolipm?X(JM k(1) — J* (1 )) 1= o)



POLICY EVALUATION

e Let’s consider approximate evaluation of the
cost of the current policy by using simulation.

— Direct policy evaluation - Cost samples gen-
erated by simulation, and optimization by
least squares

— Indirect policy evaluation - solving the pro-
jected equation ®r = IIT,(®r) where II is
projection w/ respect to a suitable weighted
Fuclidean norm

ILJ, Or = 117, (Pr)
0 0
Subspace S = {®r | r € Rs} Subspace S = {®r | r € Rs}
Direct Method: Projection of Indirect Method: Solving a projected
cost vector J, form of Bellman’s equation

e Recall that projection can be implemented by
simulation and least squares



PI WITH INDIRECT POLICY EVALUATION

Initial Policy

l

Evaluate Approximate Cost Approximate Policy

f Ju (i, r ) Evaluation

!

«— Generate “Improved” Policy 1 Policy Improvement

e Given the current policy wu:

— We solve the projected Bellman’s equation

¢r =117, (Pr)

— We approximate the solution J,, of Bellman’s
equation

J=T,J

with the projected equation solution .J, ()



KEY QUESTIONS AND RESULTS

e Does the projected equation have a solution?

e Under what conditions is the mapping II7), a
contraction, so II7}, has unique fixed point?

e Assumption: The Markov chain corresponding
to u has a single recurrent class and no transient
states, i.e., it has steady-state probabilities that
are positive

6= Jim, 2Pl io=0 >0

Note that &; is the long-term frequency of state j.

e Proposition: (Norm Matching Property) As-
sume that the projection II is with respect to ||-||¢,
where & = (&1,...,&,) is the steady-state proba-
bility vector. Then:

(a) IIT, is contraction of modulus a with re-
spect to || - ||¢.

(b) The unique fixed point ®r* of IIT), satisfies

1
|y = @ le <

= WH‘JM_HJMH’S



PRELIMINARIES: PROJECTION PROPERTIES

e Important property of the projection II on S
with weighted Euclidean norm || - ||¢. For all J &
Rr, &r € S, the Pythagorean Theorem holds:

|J = @r||z =] — ILT|[g + [[ILJ — @r|]¢

J

|
|
|
|
or L I

Subspace S = {®r | r € fs}

e The Pythagorean Theorem implies that the pro-
jection 1s nonexpansive, 1.€.,

ITLT — T1J ||¢ < ||J — J]|e, for all J,.J € Rn.
To see this, note that

|7 =7)|; < |0 =), + || -mT - 7).
= ||J = JII?



PROOF OF CONTRACTION PROPERTY

e [emma: If P is the transition matrix of u,
|Pzlle < llzlle, 2z €®n

Proof: Let p;; be the components of P. For all
z € R, we have

n n n n
P22 =& (D piz | <D &Y pi7?
i=1  \j=1 i=1  j=1
—ZZ€ZPZJZ _Z€JZ — H H,ga

7=1 1=1

where the inequality follows from the convexity of
the quadratic function, and the next to last equal-
ity follows from the defining property Z:”:l EiDij =
¢; of the steady-state probabilities.

e Using the lemma, the nonexpansiveness of II,
and the definition 7},J = g + aPJ, we have

T, J 1T, J|le < |TuJ=TuJlle = al|P(J=J)[le < allJ—J||¢

for all J,J € R*. Hence IIT), is a contraction of
modulus «



PROOF OF ERROR BOUND

e Let ®r* be the fixed point of II7". We have

HJ,LL — (I)T*H&' < HJM - HJMHS-

1
V1 — a2
Proof: We have

[ = @2 = || Ty — T2 + || 11T, — @+

Ils =

2
3

Jp — I |I2 + [|[OTJ, — IIT(@r) |
Ty — T, 4 a2, — @72,

VAN

where

— The first equality uses the Pythagorean The-
orem

— The second equality holds because J,, is the
fixed point of 1" and ®r* is the fixed point
of IIT

— The inequality uses the contraction property
of IIT".

Q.E.D.



SIMULATION-BASED SOLUTION OF

PROJECTED EQUATION



MATRIX FORM OF PROJECTED EQUATION

Tu(cpr) =g+ aPor

0
Subspace S = {®r | r € Rs}

e The solution ®r* satisfies the orthogonality con-
dition: The error

Or* — (g + aPdr+)

is “orthogonal” to the subspace spanned by the
columns of P.

e 'This is written as

O'Z(Pr* — (g + aPPr+)) =0,

where = is the diagonal matrix with the steady-
state probabilities &1, ..., &, along the diagonal.

e Equivalently, C'r* = d, where

C=®=(I—aP)®,  d=dZy

but computing C' and d is HARD (high-dimensional
inner products).



SOLUTION OF PROJECTED EQUATION

e Solve Cr* = d by matrix inversion: r* = C—1d

e Projected Value Iteration (PVI) method:
Oria1 =T (Pry) =1(g + aPPry)

Converges to r* because II1' is a contraction.

Value lterate
T(Prk) =g + aPdri

[ ..
Projection
onS

I
®rg+1

dry
0
S: Subspace spanned by basis functions

e PVI can be written as:

rrr1 = arg min ||®r — (g + aP®ry) H2
re¥ys §

By setting to 0 the gradient with respect to r,
O'E(Pri41 — (9 + aPPrg)) =0,

which yields
Tk+1 — Tk — ((I)’Eq))_l(CTk — d)



SIMULATION-BASED IMPLEMENTATIONS

e Key idea: Calculate simulation-based approxi-
mations based on k samples

CR%C, dk%d

e Matrix inversion r* = (C—1d is approximated
by
. = Ctdy,

This is the LSTD (Least Squares Temporal Dif-
ferences) Method.

e PVI method rg41 =1y — (P'Z2P)~1(Crp —d) is
approximated by

rer1 =Tk — Gr(Crry — di)
where
Gk: > ((I)/E(I))_l

This is the LSPE (Least Squares Policy Evalua-
tion) Method.

o Key fact: C%, di, and G can be computed
with low-dimensional linear algebra (of order s;
the number of basis functions).



SIMULATION MECHANICS

e We generate an infinitely long trajectory (ig, i1, .. .)
of the Markov chain, so states ¢ and transitions
(4, 7) appear with long-term frequencies &; and p;;.

o After generating each transition (i:,4¢41), We
compute the row ¢(i¢)’ of ® and the cost compo-

nent g(i¢, t¢+1).

e We form

k
1 : . NPT —
dr = Er1 E P(it)g(it, it41) ~ E &ipijP(i)g(i,7) = ®'Eg =d
t=0 i,j

k
1 / ! —
Ck = k——f—l t_E : ¢(Zt)(¢(zt)—&¢(?,t+1)) ~ ¢ :([—Oép)q) = C

Also in the case of LSPE

k
1
= — ' ) =~ Q=
Gg T ;:O o(i)p(ir) =~ P'=P

e Convergence based on law of large numbers.

o (%, di, and G can be formed incrementally.
Also can be written using the formalism of tem-
poral differences (this is just a matter of style)



OPTIMISTIC VERSIONS

e Instead of calculating nearly exact approxima-
tions C}. =~ C' and dp ~ d, we do a less accurate
approximation, based on few simulation samples

e Evaluate (coarsely) current policy u, then do a
policy improvement

e This often leads to faster computation (as op-
timistic methods often do)

e Very complex behavior (see the subsequent dis-
cussion on oscillations)

e The matrix inversion/LSTD method has serious
problems due to large simulation noise (because of
limited sampling) - particularly if the C' matrix is
ill-conditioned

e LSPE tends to cope better because of its itera-
tive nature (this is true of other iterative methods
as well)

e A stepsize v € (0,1] in LSPE may be useful to
damp the effect of simulation noise

ret+1 = 1k — YGr(Crry — di)



MULTISTEP PROJECTED EQUATIONS



MULTISTEP METHODS

e Introduce a multistep version of Bellman’s equa-
tion J = TN J, where for A € [0, 1),
T = (1—\) Z NTEA+1
(=0
Geometrically weighted sum of powers of T

e Note that T is a contraction with modulus
o, with respect to the weighted Euclidean norm
|||, where & is the steady-state probability vector
of the Markov chain.

e Hence T is a contraction with modulus

o

ay=(1-2X) Za“l)\f =
=0

a(l — M)
1 —ai

Note that oy, —0as A — 1

e 7% and T have the same fixed point J,, and

1
[T = @r3lle < > 1 — ILJ e

where ®r} is the fixed point of IITM).
e The fixed point ®r} depends on A.



BIAS-VARIANCE TRADEOFF

®r3: Solution of projected equation
Or = IITN) (Pr)

Simulation error

_—'_-"'“,--r’ o
A=1,—~—[.-== Bias
T —— ‘\Simulation error

Subspace S = {®r | r € Rs}

e Error bound ||J, —®7 |l <

\/1%70& HJM_HJMHS
e As A 7T 1, we have a | 0, so error bound (and
the quality of approximation) improves as \ 1 1.
In fact

lim ®r% = I1J
lim &3 = ILJ,

e DBut the simulation noise in approximating
T = (1—\) Z N1
(=0

lncreases

e Choice of A is usually based on trial and error



MULTISTEP PROJECTED EQ. METHODS

e The projected Bellman equation is
Or = IITN) (dr)

e In matrix form: CMNyr = dN) | where
CH =@ E(I —aPM)®,  dN =d=gW),
with

P =(1-)\) Z al NP1 g(N) = Z at\EPtg
£=0 £=0
e The LSTD()) method is

Ay —1 (A
(),
where C,S‘) and d,g‘) are simulation-based approx-
imations of C(A) and d(\V).

e The LSPE()\) method is
Tk+1 = Tk — VG (C]iA)Tk — d;(j))

where G, is a simulation-based approx. to (®/=d) 1

e TD()): An important simpler/slower iteration
[similar to LSPE()\) with Gy = I - see the text].



MORE ON MULTISTEP METHODS

e The simulation process to obtain C,S‘) and d,(:‘)

is similar to the case A = 0 (single simulation tra-

jectory ig, i1, ..., more complex formulas)
k
. /
CY = b(it) Z M=t (i) — (i 11))
k +1 po
o k k
d\ m—t \m—t .
k ]C + 1 ;Qﬁ Zt n;& 9inm,

e In the context of approximate policy iteration,
we can use optimistic versions (few samples be-
tween policy updates).

e Many different versions (see the text).

e Note the )\-tradeoffs:

— As A1 1, Cl(c/\) and d,(;\) contain more “sim-
ulation noise”, so more samples are needed
for a close approximation of 7y (the solution
of the projected equation)

— The error bound ||.J,—®7,||¢ becomes smaller

— As A 1 1, IITN) becomes a contraction for
arbitrary projection norm



