APPROXIMATE DYNAMIC PROGRAMMING

LECTURE 3

LECTURE OUTLINE

- Review of discounted DP
- Introduction to approximate DP
- Approximation architectures
- Simulation-based approximate policy iteration
- Approximate policy evaluation
- Some general issues about approximation and simulation

DISCOUNTED PROBLEMS/BOUNDED COST

Stationary system with arbitrary state space

$$x_{k+1} = f(x_k, u_k, w_k), \qquad k = 0, 1, \dots$$

• Cost of a policy $\pi = \{\mu_0, \mu_1, \ldots\}$

$$J_{\pi}(x_0) = \lim_{N \to \infty} \mathop{E}_{\substack{w_k \\ k=0,1,\dots}} \left\{ \sum_{k=0}^{N-1} \alpha^k g(x_k, \mu_k(x_k), w_k) \right\}$$

with $\alpha < 1$, and for some M, we have $|g(x, u, w)| \le M$ for all (x, u, w)

• Shorthand notation for DP mappings (operate on functions of state to produce other functions)

$$(TJ)(x) = \min_{u \in U(x)} \mathop{E}_{w} \left\{ g(x, u, w) + \alpha J \left(f(x, u, w) \right) \right\}, \ \forall \ x$$

TJ is the optimal cost function for the one-stage problem with stage cost g and terminal cost αJ

• For any stationary policy μ

$$(T_{\mu}J)(x) = \mathop{E}_{w} \left\{ g\left(x, \mu(x), w\right) + \alpha J\left(f(x, \mu(x), w)\right) \right\}, \ \forall \ x$$

MDP - TRANSITION PROBABILITY NOTATION

- We will mostly assume the system is an *n*-state (controlled) Markov chain
- We will often switch to Markov chain notation
 - States $i = 1, \dots, n$ (instead of x)
 - Transition probabilities $p_{i_k i_{k+1}}(u_k)$ [instead of $x_{k+1} = f(x_k, u_k, w_k)$]
 - Stage cost $g(i_k, u_k, i_{k+1})$ [instead of $g(x_k, u_k, w_k)$]
 - Cost functions $J = (J(1), \dots, J(n))$ (vectors in \Re^n)
- Cost of a policy $\pi = \{\mu_0, \mu_1, \ldots\}$

$$J_{\pi}(i) = \lim_{N \to \infty} E_{i_{k} \atop k=1,2,\dots} \left\{ \sum_{k=0}^{N-1} \alpha^{k} g(i_{k}, \mu_{k}(i_{k}), i_{k+1}) \mid i_{0} = i \right\}$$

• Shorthand notation for DP mappings

$$(TJ)(i) = \min_{u \in U(i)} \sum_{j=1}^{n} p_{ij}(u) (g(i, u, j) + \alpha J(j)), \quad i = 1, \dots, n,$$

$$(T_{\mu}J)(i) = \sum_{j=1}^{n} p_{ij}(\mu(i))(g(i,\mu(i),j) + \alpha J(j)), \quad i = 1,\dots,n$$

"SHORTHAND" THEORY – A SUMMARY

• Bellman's equation: $J^* = TJ^*, J_{\mu} = T_{\mu}J_{\mu}$ or

$$J^*(i) = \min_{u \in U(i)} \sum_{j=1}^{n} p_{ij}(u) (g(i, u, j) + \alpha J^*(j)), \quad \forall i$$

$$J_{\mu}(i) = \sum_{j=1}^{n} p_{ij} (\mu(i)) (g(i, \mu(i), j) + \alpha J_{\mu}(j)), \quad \forall i$$

• Optimality condition:

$$\mu$$
: optimal $\langle ==>$ $T_{\mu}J^*=TJ^*$

i.e.,

$$\mu(i) \in \arg\min_{u \in U(i)} \sum_{j=1}^{n} p_{ij}(u) (g(i, u, j) + \alpha J^*(j)), \quad \forall i$$

THE TWO MAIN ALGORITHMS: VI AND PI

• Value iteration: For any $J \in \Re^n$

$$J^*(i) = \lim_{k \to \infty} (T^k J)(i), \quad \forall i = 1, \dots, n$$

- Policy iteration: Given μ^k
 - Policy evaluation: Find J_{μ^k} by solving

$$J_{\mu^k}(i) = \sum_{j=1}^n p_{ij} (\mu^k(i)) (g(i, \mu^k(i), j) + \alpha J_{\mu^k}(j)), \quad i = 1, \dots, n$$

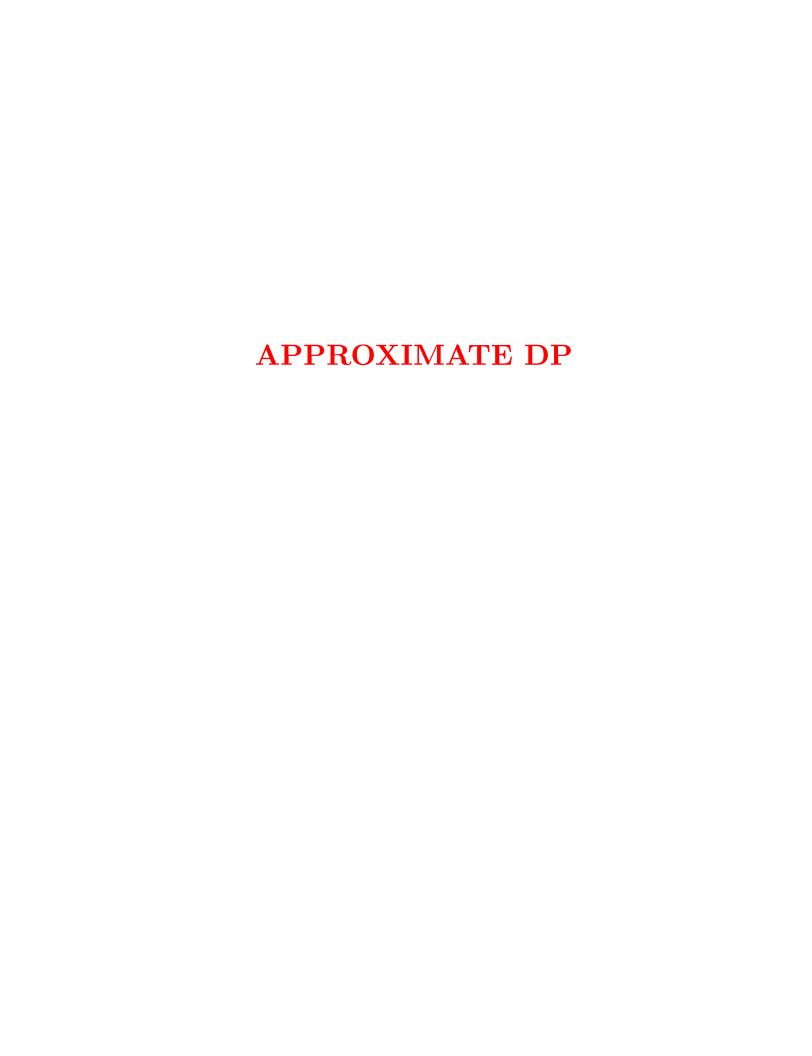
or
$$J_{\mu^k} = T_{\mu^k} J_{\mu^k}$$

- Policy improvement: Let μ^{k+1} be such that

$$\mu^{k+1}(i) \in \arg\min_{u \in U(i)} \sum_{j=1}^{n} p_{ij}(u) (g(i, u, j) + \alpha J_{\mu^k}(j)), \quad \forall i$$

or
$$T_{\mu^{k+1}}J_{\mu^k} = TJ_{\mu^k}$$

- Policy evaluation is equivalent to solving an $n \times n$ linear system of equations
- For large n, exact PI is out of the question. We use instead optimistic PI (policy evaluation with a few VIs)



GENERAL ORIENTATION TO ADP

- ADP (late 80s present) is a breakthrough methodology that allows the application of DP to problems with many or infinite number of states.
- Other names for ADP are:
 - "reinforcement learning" (RL).
 - "neuro-dynamic programming" (NDP).
 - "adaptive dynamic programming" (ADP).
- We will mainly adopt an n-state discounted model (the easiest case but think of HUGE n).
- Extensions to other DP models (continuous space, continuous-time, not discounted) are possible (but more quirky). We will set aside for later.
- There are many approaches:
 - Problem approximation
 - Simulation-based approaches (we will focus on these)
- Simulation-based methods are of three types:
 - Rollout (we will not discuss further)
 - Approximation in value space
 - Approximation in policy space

WHY DO WE USE SIMULATION?

- One reason: Computational complexity advantage in computing sums/expectations involving a very large number of terms
 - Any sum

$$\sum_{i=1}^{n} a_i$$

can be written as an expected value:

$$\sum_{i=1}^{n} a_i = \sum_{i=1}^{n} \xi_i \frac{a_i}{\xi_i} = E_{\xi} \left\{ \frac{a_i}{\xi_i} \right\},\,$$

where ξ is any prob. distribution over $\{1, \ldots, n\}$

– It can be approximated by generating many samples $\{i_1, \ldots, i_k\}$ from $\{1, \ldots, n\}$, according to distribution ξ , and Monte Carlo averaging:

$$\sum_{i=1}^{n} a_{i} = E_{\xi} \left\{ \frac{a_{i}}{\xi_{i}} \right\} \approx \frac{1}{k} \sum_{t=1}^{k} \frac{a_{i_{t}}}{\xi_{i_{t}}}$$

• Simulation is also convenient when an analytical model of the system is unavailable, but a simulation/computer model is possible.

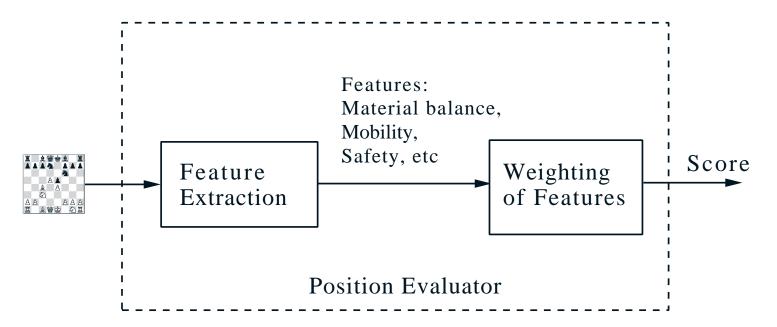
APPROXIMATION IN VALUE AND POLICY SPACE

APPROXIMATION IN VALUE SPACE

- Approximate J^* or J_{μ} from a parametric class $\tilde{J}(i;r)$ where i is the current state and $r=(r_1,\ldots,r_m)$ is a vector of "tunable" scalars weights
- Use \tilde{J} in place of J^* or J_{μ} in various algorithms and computations
- Role of r: By adjusting r we can change the "shape" of \tilde{J} so that it is "close" to J^* or J_{μ}
- Two key issues:
 - The choice of parametric class $\tilde{J}(i;r)$ (the approximation architecture)
 - Method for tuning the weights ("training")
 the architecture)
- Success depends strongly on how these issues are handled ... also on insight about the problem
- A simulator may be used, particularly when there is no mathematical model of the system (but there is a computer model)
- We will focus on simulation, but this is not the only possibility
- We may also use parametric approximation for Q-factors or cost function differences

APPROXIMATION ARCHITECTURES

- Divided in linear and nonlinear [i.e., linear or nonlinear dependence of $\tilde{J}(i;r)$ on r]
- Linear architectures are easier to train, but nonlinear ones (e.g., neural networks) are richer
- Computer chess example:
 - Think of board position as state and move as control
 - Uses a feature-based position evaluator that assigns a score (or approximate Q-factor) to each position/move



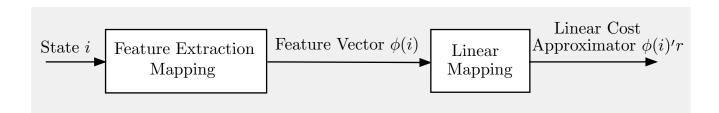
• Relatively few special features and weights, and multistep lookahead

LINEAR APPROXIMATION ARCHITECTURES

- Often, the features encode much of the nonlinearity inherent in the cost function approximated
- Then the approximation may be quite accurate without a complicated architecture (as an extreme example, the ideal feature is the true cost function)
- With well-chosen features, we can use a linear architecture: $\tilde{J}(i;r) = \phi(i)'r$, $i = 1, \ldots, n$, or

$$\tilde{J}(r) = \Phi r = \sum_{j=1}^{s} \Phi_j r_j$$

 Φ : the matrix whose rows are $\phi(i)'$, $i = 1, \ldots, n$, Φ_j is the jth column of Φ



• This is approximation on the subspace

$$S = \{ \Phi r \mid r \in \Re^s \}$$

spanned by the columns of Φ (basis functions)

• Many examples of feature types: Polynomial approximation, radial basis functions, etc

ILLUSTRATIONS: POLYNOMIAL TYPE

• Polynomial Approximation, e.g., a quadratic approximating function. Let the state be $i = (i_1, \ldots, i_q)$ (i.e., have q "dimensions") and define

$$\phi_0(i) = 1, \ \phi_k(i) = i_k, \ \phi_{km}(i) = i_k i_m, \ k, m = 1, \dots, q$$

Linear approximation architecture:

$$\tilde{J}(i;r) = r_0 + \sum_{k=1}^{q} r_k i_k + \sum_{k=1}^{q} \sum_{m=k}^{q} r_{km} i_k i_m,$$

where r has components r_0 , r_k , and r_{km} .

• Interpolation: A subset I of special/representative states is selected, and the parameter vector r has one component r_i per state $i \in I$. The approximating function is

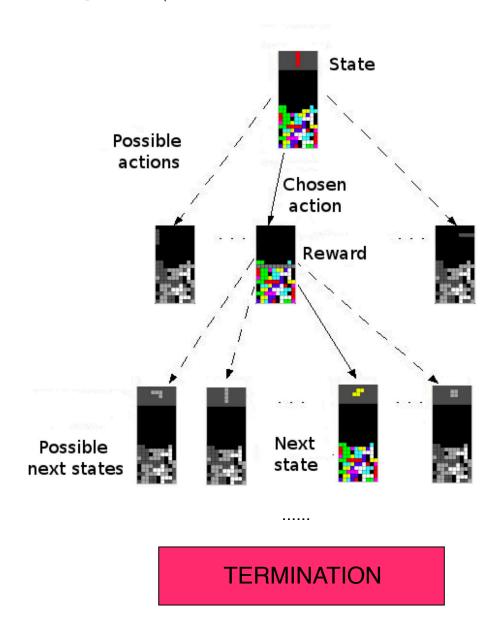
$$\tilde{J}(i;r) = r_i, \qquad i \in I,$$

 $\tilde{J}(i;r) = \text{interpolation using the values at } i \in I, \ i \notin I$

For example, piecewise constant, piecewise linear, more general polynomial interpolations.

A DOMAIN SPECIFIC EXAMPLE

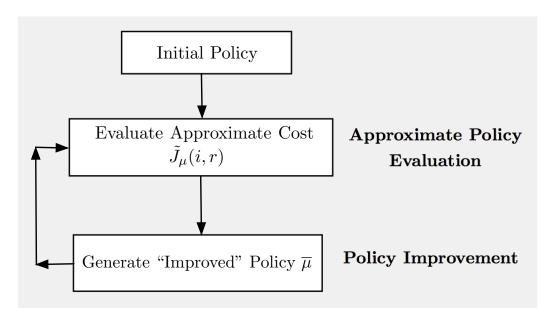
• Tetris game (used as testbed in competitions)



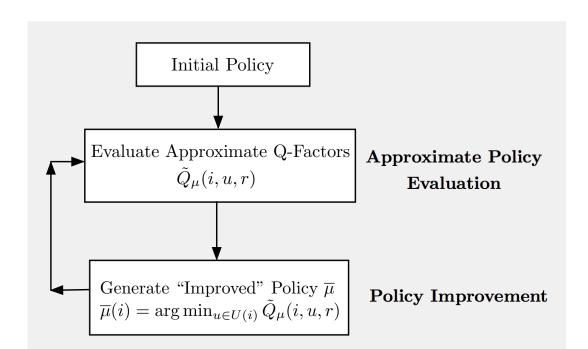
- $J^*(i)$: optimal score starting from position i
- Number of states $> 2^{200}$ (for 10×20 board)
- Success with just 22 features, readily recognized by tetris players as capturing important aspects of the board position (heights of columns, etc)

APPROX. PI - OPTION TO APPROX. J_{μ} OR Q_{μ}

- Use simulation to approximate the cost J_{μ} of the current policy μ
- Generate "improved" policy $\overline{\mu}$ by minimizing in (approx.) Bellman equation



• Alternatively approximate the Q-factors of μ



APPROXIMATING J^* OR Q^*

- Approximation of the optimal cost function J^*
 - Q-Learning: Use a simulation algorithm to approximate the Q-factors

$$Q^*(i, u) = g(i, u) + \alpha \sum_{j=1}^{n} p_{ij}(u)J^*(j);$$

and the optimal costs

$$J^*(i) = \min_{u \in U(i)} Q^*(i, u)$$

- Bellman Error approach: Find r to

$$\min_{r} E_{i} \left\{ \left(\tilde{J}(i;r) - (T\tilde{J})(i;r) \right)^{2} \right\}$$

where $E_i\{\cdot\}$ is taken with respect to some distribution over the states

- Approximate Linear Programming (we will not discuss here)
- Q-learning can also be used with approximations
- Q-learning and Bellman error approach can also be used for policy evaluation

APPROXIMATION IN POLICY SPACE

- A brief discussion; we will return to it later.
- Use parametrization $\mu(i;r)$ of policies with a vector $r = (r_1, \ldots, r_s)$. Examples:
 - Polynomial, e.g., $\mu(i;r) = r_1 + r_2 \cdot i + r_3 \cdot i^2$
 - Linear feature-based

$$\mu(i;r) = \phi_1(i) \cdot r_1 + \phi_2(i) \cdot r_2$$

- Optimize the cost over r. For example:
 - Each value of r defines a stationary policy, with cost starting at state i denoted by $\tilde{J}(i;r)$.
 - Let (p_1, \ldots, p_n) be some probability distribution over the states, and minimize over r

$$\sum_{i=1}^{n} p_i \tilde{J}(i;r)$$

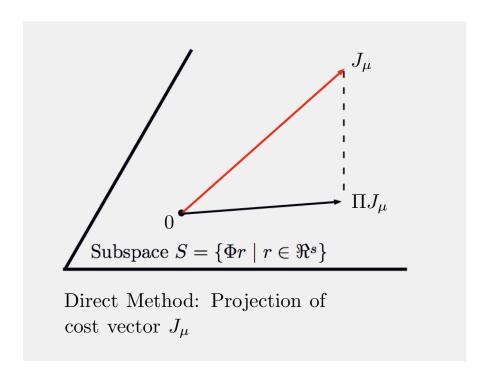
- Use a random search, gradient, or other method
- A special case: The parameterization of the policies is indirect, through a cost approximation architecture \hat{J} , i.e.,

$$\mu(i;r) \in \arg\min_{u \in U(i)} \sum_{j=1}^{n} p_{ij}(u) \left(g(i,u,j) + \alpha \hat{J}(j;r) \right)$$

APPROXIMATE POLICY EVALUATION METHODS

DIRECT POLICY EVALUATION

- Approximate the cost of the current policy by using least squares and simulation-generated cost samples
- Amounts to projection of J_{μ} onto the approximation subspace



- Solution by least squares methods
- Regular and optimistic policy iteration
- Nonlinear approximation architectures may also be used

DIRECT EVALUATION BY SIMULATION

- Projection by Monte Carlo Simulation: Compute the projection ΠJ_{μ} of J_{μ} on subspace $S = \{\Phi r \mid r \in \Re^s\}$, with respect to a weighted Euclidean norm $\|\cdot\|_{\xi}$
- Equivalently, find Φr^* , where

$$r^* = \arg\min_{r \in \mathbb{R}^s} \|\Phi r - J_{\mu}\|_{\xi}^2 = \arg\min_{r \in \mathbb{R}^s} \sum_{i=1}^n \xi_i (\phi(i)'r - J_{\mu}(i))^2$$

• Setting to 0 the gradient at r^* ,

$$r^* = \left(\sum_{i=1}^n \xi_i \phi(i) \phi(i)'\right)^{-1} \sum_{i=1}^n \xi_i \phi(i) J_{\mu}(i)$$

- Generate samples $\{(i_1, J_{\mu}(i_1)), \dots, (i_k, J_{\mu}(i_k))\}$ using distribution ξ
- Approximate by Monte Carlo the two "expected values" with low-dimensional calculations

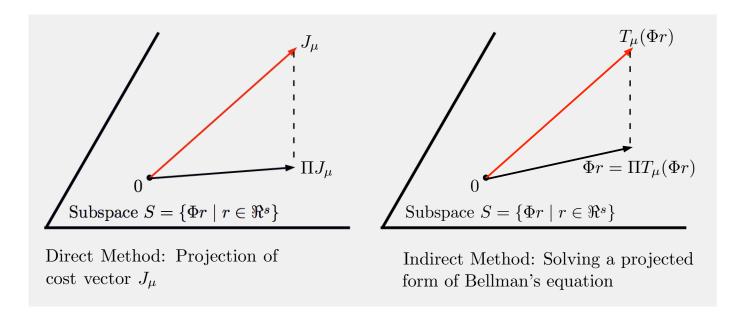
$$\hat{r}_k = \left(\sum_{t=1}^k \phi(i_t)\phi(i_t)'\right)^{-1} \sum_{t=1}^k \phi(i_t)J_{\mu}(i_t)$$

• Equivalent least squares alternative calculation:

$$\hat{r}_k = \arg\min_{r \in \Re^s} \sum_{t=1}^k \left(\phi(i_t)'r - J_{\mu}(i_t) \right)^2$$

INDIRECT POLICY EVALUATION

- An example: Galerkin approximation
- Solve the projected equation $\Phi r = \Pi T_{\mu}(\Phi r)$ where Π is projection w/ respect to a suitable weighted Euclidean norm



- Solution methods that use simulation (to manage the calculation of Π)
 - TD(λ): Stochastic iterative algorithm for solving $\Phi r = \Pi T_{\mu}(\Phi r)$
 - LSTD(λ): Solves a simulation-based approximation w/ a standard solver
 - LSPE(λ): A simulation-based form of projected value iteration; essentially

$$\Phi r_{k+1} = \Pi T_{\mu}(\Phi r_k) + \text{ simulation noise}$$

BELLMAN EQUATION ERROR METHODS

• Another example of indirect approximate policy evaluation:

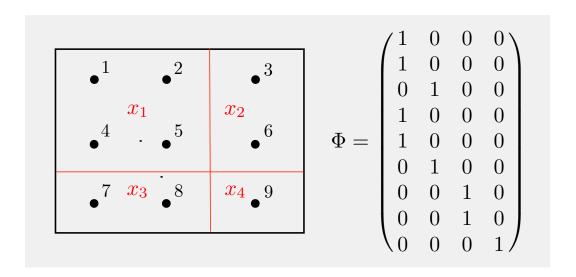
$$\min_{r} \|\Phi r - T_{\mu}(\Phi r)\|_{\xi}^{2} \tag{*}$$

where $\|\cdot\|_{\xi}$ is Euclidean norm, weighted with respect to some distribution ξ

- It is closely related to the projected equation/Galerkin approach (with a special choice of projection norm)
- Several ways to implement projected equation and Bellman error methods by simulation. They involve:
 - Generating many random samples of states i_k using the distribution ξ
 - Generating many samples of transitions (i_k, j_k) using the policy μ
 - Form a simulation-based approximation of the optimality condition for projection problem or problem (*) (use sample averages in place of inner products)
 - Solve the Monte-Carlo approximation of the optimality condition
- Issues for indirect methods: How to generate the samples? How to calculate r^* efficiently?

ANOTHER INDIRECT METHOD: AGGREGATION

- A first idea: Group similar states together into "aggregate states" x_1, \ldots, x_s ; assign a common cost value r_i to each group x_i .
- Solve an "aggregate" DP problem, involving the aggregate states, to obtain $r = (r_1, \ldots, r_s)$. This is called hard aggregation



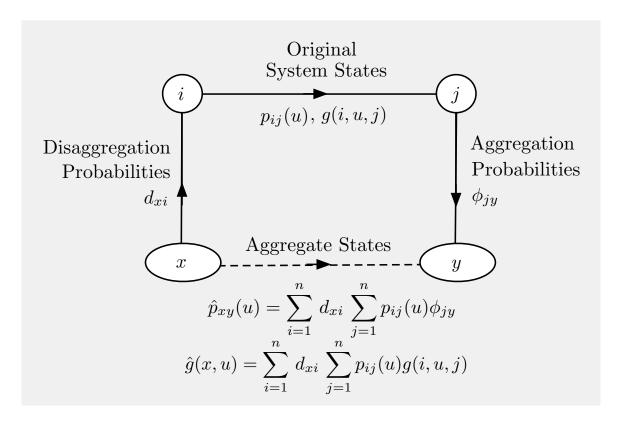
• More general/mathematical view: Solve

$$\Phi r = \Phi D T_{\mu}(\Phi r)$$

where the rows of D and Φ are prob. distributions (e.g., D and Φ "aggregate" rows and columns of the linear system $J = T_{\mu}J$)

• Compare with projected equation $\Phi r = \Pi T_{\mu}(\Phi r)$. Note: ΦD is a projection in some interesting cases

AGGREGATION AS PROBLEM APPROXIMATION



- Aggregation can be viewed as a systematic approach for problem approximation. Main elements:
 - Solve (exactly or approximately) the "aggregate" problem by any kind of VI or PI method (including simulation-based methods)
 - Use the optimal cost of the aggregate problem to approximate the optimal cost of the original problem
- Because an exact PI algorithm is used to solve the approximate/aggregate problem the method behaves more regularly than the projected equation approach

APPROXIMATE POLICY ITERATION ISSUES

THEORETICAL BASIS OF APPROXIMATE PI

• If policies are approximately evaluated using an approximation architecture such that

$$\max_{i} |\tilde{J}(i, r_k) - J_{\mu^k}(i)| \le \delta, \qquad k = 0, 1, \dots$$

• If policy improvement is also approximate,

$$\max_{i} |(T_{\mu^{k+1}}\tilde{J})(i,r_k) - (T\tilde{J})(i,r_k)| \le \epsilon, \qquad k = 0, 1, \dots$$

• Error bound: The sequence $\{\mu^k\}$ generated by approximate policy iteration satisfies

$$\limsup_{k \to \infty} \max_{i} \left(J_{\mu^k}(i) - J^*(i) \right) \le \frac{\epsilon + 2\alpha\delta}{(1 - \alpha)^2}$$

- Typical practical behavior: The method makes steady progress up to a point and then the iterates J_{μ^k} oscillate within a neighborhood of J^* .
- Oscillations are quite unpredictable.
 - Some bad examples of oscillations have been constructed.
 - In practice oscillations between policies is probably not the major concern.

THE ISSUE OF EXPLORATION

- To evaluate a policy μ , we need to generate cost samples using that policy this biases the simulation by underrepresenting states that are unlikely to occur under μ
- Cost-to-go estimates of underrepresented states may be highly inaccurate
- This seriously impacts the improved policy $\overline{\mu}$
- This is known as inadequate exploration a particularly acute difficulty when the randomness embodied in the transition probabilities is "relatively small" (e.g., a deterministic system)
- Some remedies:
 - Frequently restart the simulation and ensure that the initial states employed form a rich and representative subset
 - Occasionally generate transitions that use a randomly selected control rather than the one dictated by the policy μ
 - Other methods: Use two Markov chains (one is the chain of the policy and is used to generate the transition sequence, the other is used to generate the state sequence).

APPROXIMATING Q-FACTORS

- Given $\tilde{J}(i;r)$, policy improvement requires a model [knowledge of $p_{ij}(u)$ for all controls $u \in U(i)$]
- Model-free alternative: Approximate Q-factors

$$\tilde{Q}(i, u; r) \approx \sum_{j=1}^{n} p_{ij}(u) \left(g(i, u, j) + \alpha J_{\mu}(j)\right)$$

and use for policy improvement the minimization

$$\overline{\mu}(i) \in \arg\min_{u \in U(i)} \tilde{Q}(i, u; r)$$

• r is an adjustable parameter vector and $\tilde{Q}(i, u; r)$ is a parametric architecture, such as

$$\tilde{Q}(i, u; r) = \sum_{m=1}^{s} r_m \phi_m(i, u)$$

- We can adapt any of the cost approximation approaches, e.g., projected equations, aggregation
- Use the Markov chain with states (i, u), so $p_{ij}(\mu(i))$ is the transition prob. to $(j, \mu(i))$, 0 to other (j, u')
- Major concern: Acutely diminished exploration

SOME GENERAL ISSUES

STOCHASTIC ALGORITHMS: GENERALITIES

- Consider solution of a linear equation x = b + Ax by using m simulation samples $b + w_k$ and $A + W_k$, k = 1, ..., m, where w_k , W_k are random, e.g., "simulation noise"
- Think of x = b + Ax as approximate policy evaluation (projected or aggregation equations)
- Stoch. approx. (SA) approach: For $k = 1, \ldots, m$

$$x_{k+1} = (1 - \gamma_k)x_k + \gamma_k((b + w_k) + (A + W_k)x_k)$$

• Monte Carlo estimation (MCE) approach: Form Monte Carlo estimates of b and A

$$b_m = \frac{1}{m} \sum_{k=1}^{m} (b + w_k), \qquad A_m = \frac{1}{m} \sum_{k=1}^{m} (A + W_k)$$

Then solve $x = b_m + A_m x$ by matrix inversion

$$x_m = (1 - A_m)^{-1} b_m$$

or iteratively

- $TD(\lambda)$ and Q-learning are SA methods
- LSTD(λ) and LSPE(λ) are MCE methods

COSTS OR COST DIFFERENCES?

• Consider the exact policy improvement process. To compare two controls u and u' at x, we need

$$E\{g(x,u,w) - g(x,u',w) + \alpha(J_{\mu}(\overline{x}) - J_{\mu}(\overline{x}'))\}$$

where $\overline{x} = f(x, u, w)$ and $\overline{x}' = f(x, u', w)$

• Approximate $J_{\mu}(\overline{x})$ or

$$D_{\mu}(\overline{x}, \overline{x}') = J_{\mu}(\overline{x}) - J_{\mu}(\overline{x}')?$$

- Approximating $D_{\mu}(\overline{x}, \overline{x}')$ avoids "noise differencing". This can make a big difference
- Important point: D_{μ} satisfies a Bellman equation for a system with "state" (x, x')

$$D_{\mu}(x, x') = E\{G_{\mu}(x, x', w) + \alpha D_{\mu}(\overline{x}, \overline{x}')\}$$

where
$$\overline{x} = f(x, \mu(x), w), \overline{x}' = f(x', \mu(x'), w)$$
 and

$$G_{\mu}(x, x', w) = g(x, \mu(x), w) - g(x', \mu(x'), w)$$

• D_{μ} can be "learned" by the standard methods (TD, LSTD, LSPE, Bellman error, aggregation, etc). This is known as differential training.

AN EXAMPLE (FROM THE NDP TEXT)

• System and cost per stage:

$$x_{k+1} = x_k + \delta u_k, \qquad g(x, u) = \delta(x^2 + u^2)$$

 $\delta > 0$ is very small; think of discretization of continuous-time problem involving dx(t)/dt = u(t)

• Consider policy $\mu(x) = -2x$. Its cost function is

$$J_{\mu}(x) = \frac{5x^2}{4}(1+\delta) + O(\delta^2)$$

and its Q-factor is

$$Q_{\mu}(x,u) = \frac{5x^2}{4} + \delta\left(\frac{9x^2}{4} + u^2 + \frac{5}{2}xu\right) + O(\delta^2)$$

• The important part for policy improvement is

$$\delta\left(u^2 + \frac{5}{2}xu\right)$$

When $J_{\mu}(x)$ [or $Q_{\mu}(x,u)$] is approximated by $\tilde{J}_{\mu}(x;r)$ [or by $\tilde{Q}_{\mu}(x,u;r)$], it will be dominated by $\frac{5x^2}{4}$ and will be "lost"