APPROXIMATE DYNAMIC PROGRAMMING
LECTURE 3

LECTURE OUTLINE

e Review of discounted DP

e Introduction to approximate DP

e Approximation architectures

e Simulation-based approximate policy iteration
e Approximate policy evaluation

e Some general issues about approximation and
simulation



REVIEW



DISCOUNTED PROBLEMS/BOUNDED COST

e Stationary system with arbitrary state space

Lk+1 :f(a:k,uk,wk), k:O,l,...

e Cost of a policy m = {uo, 1, ...}

Jx(zo) = lim  F {Z@kg(xkaﬂk(xk)awk)}

N —o0 W
k=0,1,... k=0

with a < 1, and for some M, we have |g(z, u, w)| <
M for all (z,u,w)

e Shorthand notation for DP mappings (operate
on functions of state to produce other functions)

(TJ)(x) = min E{g(a:,u,w)+aJ(f(x,u,w))},‘v’x

uweU(x) w

T'J is the optimal cost function for the one-stage
problem with stage cost g and terminal cost a.J

e For any stationary policy

(T,)(@) = B {g(w,n(@),w) +ad (f (@, u(@),w) } Vo



MDP - TRANSITION PROBABILITY NOTATION

e We will mostly assume the system is an n-state
(controlled) Markov chain
e We will often switch to Markov chain notation
— States ¢ =1,...,n (instead of x)
— Transition probabilities p;,;, ., (u) |instead
of xxr1 = f(ak, uk, wi)]
— Stage cost g(ig, U, ix11) [instead of g(xg, ug, wi)]
— Cost functions J = (J(1),...,J(n)) (vec-
tors in Rn)

e Cost of a policy m = {uo, 1, ...}

N-1
Jr(i) = lim E {1;) ok g (ig, s (in), iky1) | o = Z}
k=1,2,... =

e Shorthand notation for DP mappings



“SHORTHAND” THEORY - A SUMMARY

e DBellman’s equation: J* =TJ*, J, =1,,J, or

n

J* (1) ZUggI(li)me(U)(g(z u,j) +aJ* (), Vi

e Optimality condition:
p: optimal <==> 1T, J*=TJ*

le.,

c ; J)rad (), Vi
u(i) € arg min Zpg (9(i,u, j)+at*(j)), Vi



THE TWO MAIN ALGORITHMS: VI AND PI

e Value iteration: For any J € R»

J*(i) = lim (T*J)(2), Vi=1,...,n

k— o0

e Policy iteration: Given u*
— Policy evaluation: Find J ,» by solving

= > i (1) (9( 1" (1), 5) vk (7)), i=1,...

or Jluk B TMk:JMk:

— Policy improvement: Let p*+1! be such that

k—l—l . . .
:LL 6 argurénl}r(lz) pr 7’ ’U,,])—FOZJMI« (]))7 \V/Z

or T,uk+1 J,u"“ = TJMI«

e Policy evaluation is equivalent to solving an
n X n linear system of equations

e For large n, exact PI is out of the question. We

use instead optimistic PI (policy evaluation with
a few VlIs)



APPROXIMATE DP



GENERAL ORIENTATION TO ADP

e ADP (late 80s - present) is a breakthrough
methodology that allows the application of DP to
problems with many or infinite number of states.
e Other names for ADP are:

— “reinforcement learning” (RL).

— “neuro-dynamic programming” (NDP).

— “adaptive dynamic programming” (ADP).

e We will mainly adopt an n-state discounted
model (the easiest case - but think of HUGE n).

e Extensions to other DP models (continuous
space, continuous-time, not discounted) are possi-
ble (but more quirky). We will set aside for later.
e There are many approaches:

— Problem approximation

— Simulation-based approaches (we will focus

on these)

e Simulation-based methods are of three types:

— Rollout (we will not discuss further)

— Approximation in value space

— Approximation in policy space



WHY DO WE USE SIMULATION?

e One reason: Computational complexity advan-
tage in computing sums/expectations involving a
very large number of terms

— Any sum
n

>

1=1

can be written as an expected value:
N
i=1 i=1 > ¢

where £ is any prob. distribution over {1,...,n}

— It can be approximated by generating many
samples {i1,...,ix} from {1,...,n}, accord-
ing to distribution &, and Monte Carlo aver-
aging:

e Simulation is also convenient when an analytical
model of the system is unavailable, but a simula-
tion/computer model is possible.



APPROXIMATION IN VALUE AND

POLICY SPACE



APPROXIMATION IN VALUE SPACE

e Approximate J* or J, from a parametric class
J(i;7r) where 7 is the current state and r = (r1,...,7m)
is a vector of “tunable” scalars weights

e Use J in place of J* or J,, in various algorithms
and computations

e Role of r: By adjusting r we can change the
“shape” of J so that it is “close” to J* or J,

e Two key issues:

— The choice of parametric class J(i;r) (the
approximation architecture)

— Method for tuning the weights (“training”
the architecture)

e Success depends strongly on how these issues
are handled ... also on insight about the problem

e A simulator may be used, particularly when
there is no mathematical model of the system (but
there is a computer model)

e We will focus on simulation, but this is not the
only possibility

e We may also use parametric approximation for
(Q-factors or cost function differences



APPROXIMATION ARCHITECTURES

e Divided in linear and nonlinear [i.e., linear or
nonlinear dependence of J(i;7) on r]

e Linear architectures are easier to train, but non-
linear ones (e.g., neural networks) are richer

e Computer chess example:

— Think of board position as state and move
as control

— Uses a feature-based position evaluator that
assigns a score (or approximate (-factor) to
each position/move

_________________________________________

: |
1 1
: Features: ;
: Material balance, !
! Mobility, !
' | Feature .| Weighting I et
Extraction of Features

Position Evaluator

e Relatively few special features and weights, and
multistep lookahead



LINEAR APPROXIMATION ARCHITECTURES

e Often, the features encode much of the nonlin-
earity inherent in the cost function approximated

e Then the approximation may be quite accurate
without a complicated architecture (as an extreme
example, the ideal feature is the true cost func-
tion)

e With well-chosen features, we can use a linear

architecture: J(i;7) = ¢(i)'r,i=1,...,n, or
J(r) = ®r = ZCI)Z%;
j=1
®: the matrix whose rows are ¢(i)’, ¢+ = 1,...,n,

®,; is the 7th column of ®

. Linear Cost

State i | Feature Extraction | Feature Vector ¢(i) Linear Approximator ¢(i)r

— . > . |
Mapping Mapping

e This is approximation on the subspace
S={dr|r e Rs}
spanned by the columns of ® (basis functions)

e Many examples of feature types: Polynomial
approximation, radial basis functions, etc



ILLUSTRATIONS: POLYNOMIAL TYPE

e Polynomial Approximation, e.g., a quadratic
approximating function. Let the state be ¢ =
(41,...,%q) (i-e., have ¢ “dimensions”) and define

Linear approximation architecture:

Z r)=rog+ E Tkik + g g Tkmlklm,

k=1 m=k

where r has components rg, rr, and rg,.

e Interpolation: A subset I of special/representative

states is selected, and the parameter vector r has
one component r; per state ¢+ € I. The approxi-
mating function is

j(i;r):ri, 1e 1,

» 4

J(i;:7) = interpolation using the values at i € I, i ¢ I

For example, piecewise constant, piecewise linear,
more general polynomial interpolations.



A DOMAIN SPECIFIC EXAMPLE

e Tetris game (used as testbed in competitions)

Possible
actions 7

Chosen
action

/

Possible
hext states

s

b 4

#

/

/
g .

e J*(1): optimal score starting from position ¢
e Number of states > 2200 (for 10 x 20 board)

e Success with just 22 features, readily recognized
by tetris players as capturing important aspects of
the board position (heights of columns, etc)



APPROX. PI - OPTION TO APPROX. J, OR @,

e Use simulation to approximate the cost .J, of
the current policy u

e Generate “improved” policy &z by minimizing in
(approx.) Bellman equation

Initial Policy

l

Evaluate Approximate Cost Approximate Policy

r> jﬂ(iv T)

|

l Generate “Improved” Policy 1 Policy Improvement

Evaluation

e Altenatively approximate the ()-factors of u

Initial Policy

l

Evaluate Approximate Q-Factors

. Approximate Policy
Qu(t,u,7) Evaluation

l

«— Generate “Improved” Policy &
ﬁ(l) = arg minuEU(i) Qu (,La u, Ir)

Policy Improvement




APPROXIMATING J* OR Q*

e Approximation of the optimal cost function J*

— ()-Learning: Use a simulation algorithm to
approximate the (Q-factors

Q+(i,u) = g(i,u) + a Yy pij(u)J*(j);

j=1
and the optimal costs
J*(12) = min Q*(7,u
() = min Q(i,u)
— Bellman Error approach: Find r to

min EZ{ (j(z, r)— (TJ

r

where F;{-} is taken with respect to some
distribution over the states

— Approximate Linear Programming (we will
not discuss here)

e ()-learning can also be used with approxima-
tions

e (J)-learning and Bellman error approach can also
be used for policy evaluation



APPROXIMATION IN POLICY SPACE

e A brief discussion; we will return to it later.
e Use parametrization pu(i;r) of policies with a
vector r = (r1,...,7s). Examples:

— Polynomial, e.g., u(i;r) =ry +1r2 i+ r3 - 12

— Linear feature-based

p(isr) = ¢1(2) - r1 + ¢2(i) - 12

e Optimize the cost over r. For example:

— FEach value of r defines a stationary policy,
with cost starting at state ¢ denoted by J(; 7).

— Let (p1,...,pn) be some probability distri-
bution over the states, and minimize over r

> pid (i)
1=1

— Use a random search, gradient, or other method

e A special case: The parameterization of the
policies is indirect, through a cost approximation
architecture J, 1.e.,

u(i;r) € argurén[}?)zpw (i u, ) + aJ (j; 7))



APPROXIMATE POLICY EVALUATION

METHODS



DIRECT POLICY EVALUATION

e Approximate the cost of the current policy by
using least squares and simulation-generated cost
samples

e Amounts to projection of J, onto the approxi-
mation subspace

0
Subspace S = {®r | r € Rs}

Direct Method: Projection of
cost vector J,

e Solution by least squares methods
e Regular and optimistic policy iteration

e Nonlinear approximation architectures may also
be used



DIRECT EVALUATION BY SIMULATION

e Projection by Monte Carlo Simulation: Com-
pute the projection I1J,, of J, on subspace S =
{®r | r € Rs}, with respect to a weighted Fu-
clidean norm || - ||¢

e LEquivalently, find ®r*, where

r* = arg min
re¥s

. & : N\ 2
Dr—Jullf = arg min & (6(i)'r—Ju(i))
1=1

e Setting to 0 the gradient at r*,

—— (Z &-gb(i)qb(i)’) Z&qﬁ(i)h(i)

e Generate samples { (i1, Ju(i1)), . -, (ix, Ju(ix)) }
using distribution &

e Approximate by Monte Carlo the two “expected
values” with low-dimensional calculations

k -1k
Pl = (Z ¢(it)¢(it)’> > o) Julic)

e Equivalent least squares alternative:
k

T'e = arg gre%%ri (gb(’[:t)/r — J,u('[:t))z
t=1



INDIRECT POLICY EVALUATION

e An example: Galerkin approximation

e Solve the projected equation &r = IIT),,(Pr)
where II is projection w/ respect to a suitable
weighted Euclidean norm

— 11J,, Br = IIT),(®r)
0 0
Subspace S = {®r | r € Rs} Subspace S = {®r | r € Rs}
Direct Method: Projection of Indirect Method: Solving a projected
cost vector J, form of Bellman’s equation

e Solution methods that use simulation (to man-
age calculation of II)

— TD(\): Stochastic iterative algorithm for solv-
ing &r = IIT),(®r)

— LSTD(\): Solves a simulation-based approx-
imation w/ a standard solver

— LSPE()M): A simulation-based form of pro-
jected value iteration; essentially

briq1 =T, (Pry) + simulation noise



BELLMAN EQUATION ERROR METHODS

e Another example of indirect approximate policy
evaluation:

min ||®r — T),(Pr) Hg (%)

where || - ||¢ is Euclidean norm, weighted with re-
spect to some distribution &

e It is closely related to the projected equation/Galerkin
approach (with a special choice of projection norm)

e Several ways to implement projected equation
and Bellman error methods by simulation. They
involve:

Generating many random samples of states
1, using the distribution &

Generating many samples of transitions (i, jx)
using the policy u

Form a simulation-based approximation of
the optimality condition for projection prob-
lem or problem (*) (use sample averages in
place of inner products)

Solve the Monte-Carlo approximation of the
optimality condition

e Issues for indirect methods: How to generate
the samples? How to calculate r efficiently?



ANOTHER INDIRECT METHOD: AGGREGATION

o A first idea: Group similar states together into
“aggregate states” xi,...,Ts; assign a common
cost value r; to each group x;.

e Solve an “aggregate” DP problem, involving the
aggregate states, to obtain r = (r1,...,rs). This
is called hard aggregation

0

—_

[\

w
—

OO OO, R, O

T X2

7T Tr3 8 T4 9
o

oo o R OO = OO
O, OO0 o oo
()

y

~

e More general/mathematical view: Solve
br = &DT,(Pr)

where the rows of D and ® are prob. distributions
(e.g., D and ® “aggregate” rows and columns of
the linear system J =T,,.J)

e Compare with projected equation ®r = IIT,,(Pr).
Note: ®D is a projection in some interesting cases



AGGREGATION AS PROBLEM APPROXIMATION

Original

System States
O, - ()

Dij (u)v g(iv ua])

Disaggregation Aggregation
Probabilities Probabilities

e Aggregation can be viewed as a systematic
approach for problem approximation. Main ele-
ments:

— Solve (exactly or approximately) the “ag-
gregate” problem by any kind of VI or PI
method (including simulation-based methods)

— Use the optimal cost of the aggregate prob-
lem to approximate the optimal cost of the
original problem

e Because an exact PI algorithm is used to solve
the approximate/aggregate problem the method
behaves more regularly than the projected equa-
tion approach



APPROXIMATE POLICY ITERATION

ISSUES



THEORETICAL BASIS OF APPROXIMATE PI

e If policies are approximately evaluated using an
approximation architecture such that

max|j(i,rk)—JMk(i)|§(5, k=0,1,...

e If policy improvement is also approximate,

m_aX|(Tlukz+1j)(i,Tk)—(Tj)(i,’I“k” < €, k=20,1,...

e Error bound: The sequence {u*} generated by
approximate policy iteration satisfies

€ + 20
p <

lilrcri}s;p max (Jur(3) = J*(1)) < (1— )2

e 'T'ypical practical behavior: The method makes
steady progress up to a point and then the iterates

J,x oscillate within a neighborhood of J*.

e Oscillations are quite unpredictable.

— Some bad examples of oscillations have been
constructed.

— In practice oscillations between policies is
probably not the major concern.



THE ISSUE OF EXPLORATION

e To evaluate a policy u, we need to generate cost
samples using that policy - this biases the simula-
tion by underrepresenting states that are unlikely
to occur under u

e (Cost-to-go estimates of underrepresented states
may be highly inaccurate

e This seriously impacts the improved policy &

e This is known as inadequate exploration - a
particularly acute difficulty when the randomness
embodied in the transition probabilities is “rela-
tively small” (e.g., a deterministic system)

e Some remedies:

— Frequently restart the simulation and ensure
that the initial states employed form a rich
and representative subset

— QOccasionally generate transitions that use a
randomly selected control rather than the
one dictated by the policy

— Other methods: Use two Markov chains (one
is the chain of the policy and is used to gen-
erate the transition sequence, the other is
used to generate the state sequence).



APPROXIMATING Q-FACTORS

e Given J(i;r), policy improvement requires a
model |[knowledge of p;;(u) for all controls u €

U(i)]

e Model-free alternative: Approximate (J-factors
(4, u;T) pr g(i,u,j) + adu(j))

and use for policy improvement the minimization

h(i) € arg min Q(i,u;r)
uel (7)
e 1 is an adjustable parameter vector and @(z, u;T)
is a parametric architecture, such as
S

Q(i, u, T) — Z ngbm@? u)

m=1
e We can adapt any of the cost approximation
approaches, e.g., projected equations, aggregation

e Use the Markov chain with states (,u), so
pij(p(i)) is the transition prob. to (7, u(2)), 0 to
other (7, u’)

e Major concern: Acutely diminished exploration



SOME GENERAL ISSUES



STOCHASTIC ALGORITHMS: GENERALITIES

e (onsider solution of a linear equation x = b +
Ax by using m simulation samples b + w; and
A+Wi, k=1,...,m, where w, Wy are random,
e.g., “simulation noise”

e Think of z = b+ Ax as approximate policy
evaluation (projected or aggregation equations)

e Stoch. approx. (SA) approach: Fork=1,...,m

Try1 = (1 —vg)xr + %((b + wi) + (A + Wk)ﬂfk)

e Monte Carlo estimation (MCE) approach: Form
Monte Carlo estimates of b and A

:%Zb—l—wk :%ZAJer

Then solve x = b,,, + A,,x by matrix inversion
=(1—An) 1oy

or iteratively
e TD()) and Q-learning are SA methods
e LSTD()) and LSPE()\) are MCE methods



COSTS OR COST DIFFERENCES?

e (Consider the exact policy improvement process.
To compare two controls v and v’ at x, we need

E{g(x,u, w) — gz, u,w) + a(JM(E) — JM(E’))}

where T = f(x,u,w) and T’ = f(z, v/, w)

e Approximate J,(T) or
Du(@, @) = Ju(T) — Ju(@')?

e Approximating D, (%, T") avoids “noise differ-
encing”. This can make a big difference

e Important point: D, satisfies a Bellman equa-
tion for a system with “state” (x,z’)

Dy(z,2') = E{Gu(z,2’,w) + aD,(Z,T’) }
where T = f(x, p(z),w), = f(2/, p(z'), w) and
Gu(x, 2’ w) = g(a:,,u(a:),w) — g(x’,,u(:c’),w)

e D, can be “learned” by the standard methods

(TD, LSTD, LSPE, Bellman error, aggregation,
etc). This is known as differential training.



AN EXAMPLE (FROM THE NDP TEXT)

e System and cost per stage:

Tpi1 = Tk + Sug, g(z,u) = d6(x? + u?)
0 > 0 is very small; think of discretization of
continuous-time problem involving dx(t) /dt = u(t)
e Consider policy u(x) = —2x. Its cost function
1S

Ha?

Ju(x) = 1 —(14+9) +0(62)
and its Q-factor is

Ha? 92

Qux,u) = e +0 (T + u? + ;a:u> + 0(42)

e The important part for policy improvement is

) (u2 + gxu>

‘When Jy(z) [or Qu(x,u)] is approximated by
Ju(x;7r) lor by Qu(x,u;r)], it will be dominated
by 22 and will be “lost”



