
APPROXIMATE DYNAMIC PROGRAMMING

LECTURE 3

LECTURE OUTLINE

• Review of discounted DP

• Introduction to approximate DP

• Approximation architectures

• Simulation-based approximate policy iteration

• Approximate policy evaluation

• Some general issues about approximation and
simulation



REVIEW



DISCOUNTED PROBLEMS/BOUNDED COST

• Stationary system with arbitrary state space

xk+1 = f(xk, uk, wk), k = 0, 1, . . .

• Cost of a policy π = {µ0, µ1, . . .}

Jπ(x0) = lim
N→∞

E
wk

k=0,1,...

{

N−1
∑

k=0

αkg
(

xk, µk(xk), wk

)

}

with α < 1, and for someM , we have |g(x, u, w)| ≤
M for all (x, u, w)

• Shorthand notation for DP mappings (operate
on functions of state to produce other functions)

(TJ)(x) = min
u∈U(x)

E
w

{

g(x, u, w) + αJ
(

f(x, u, w)
)}

, ∀ x

TJ is the optimal cost function for the one-stage
problem with stage cost g and terminal cost αJ

• For any stationary policy µ

(TµJ)(x) = E
w

{

g
(

x, µ(x), w
)

+ αJ
(

f(x, µ(x), w)
)}

, ∀ x



MDP - TRANSITION PROBABILITY NOTATION

• We will mostly assume the system is an n-state
(controlled) Markov chain

• We will often switch to Markov chain notation

− States i = 1, . . . , n (instead of x)

− Transition probabilities pikik+1
(uk) [instead

of xk+1 = f(xk, uk, wk)]

− Stage cost g(ik, uk, ik+1) [instead of g(xk, uk, wk)]

− Cost functions J =
(

J(1), . . . , J(n)
)

(vec-
tors in ℜn)

• Cost of a policy π = {µ0, µ1, . . .}

Jπ(i) = lim
N→∞

E
ik

k=1,2,...

{

N−1
∑

k=0

αkg
(

ik, µk(ik), ik+1

)

| i0 = i

}

• Shorthand notation for DP mappings

(TJ)(i) = min
u∈U(i)

n
∑

j=1

pij(u)
(

g(i, u, j)+αJ(j)
)

, i = 1, . . . , n,

(TµJ)(i) =

n
∑

j=1

pij
(

µ(i)
)(

g
(

i, µ(i), j
)

+αJ(j)
)

, i = 1, . . . , n



“SHORTHAND” THEORY – A SUMMARY

• Bellman’s equation: J∗ = TJ∗, Jµ = TµJµ or

J∗(i) = min
u∈U(i)

n
∑

j=1

pij(u)
(

g(i, u, j)+αJ∗(j)
)

, ∀ i

Jµ(i) =
n
∑

j=1

pij
(

µ(i)
)(

g
(

i, µ(i), j
)

+ αJµ(j)
)

, ∀ i

• Optimality condition:

µ: optimal <==> TµJ∗ = TJ∗

i.e.,

µ(i) ∈ arg min
u∈U(i)

n
∑

j=1

pij(u)
(

g(i, u, j)+αJ∗(j)
)

, ∀ i



THE TWO MAIN ALGORITHMS: VI AND PI

• Value iteration: For any J ∈ ℜn

J∗(i) = lim
k→∞

(T kJ)(i), ∀ i = 1, . . . , n

• Policy iteration: Given µk

− Policy evaluation: Find Jµk by solving

Jµk (i) =

n
∑

j=1

pij
(

µ
k(i)
)(

g
(

i, µ
k(i), j

)

+αJµk (j)
)

, i = 1, . . . , n

or Jµk = TµkJµk

− Policy improvement: Let µk+1 be such that

µ
k+1(i) ∈ arg min

u∈U(i)

n
∑

j=1

pij(u)
(

g(i, u, j)+αJµk (j)
)

, ∀ i

or Tµk+1Jµk = TJµk

• Policy evaluation is equivalent to solving an
n× n linear system of equations

• For large n, exact PI is out of the question. We
use instead optimistic PI (policy evaluation with
a few VIs)



APPROXIMATE DP



GENERAL ORIENTATION TO ADP

• ADP (late 80s - present) is a breakthrough
methodology that allows the application of DP to
problems with many or infinite number of states.

• Other names for ADP are:

− “reinforcement learning” (RL).

− “neuro-dynamic programming” (NDP).

− “adaptive dynamic programming” (ADP).

• We will mainly adopt an n-state discounted
model (the easiest case - but think of HUGE n).

• Extensions to other DP models (continuous
space, continuous-time, not discounted) are possi-
ble (but more quirky). We will set aside for later.

• There are many approaches:

− Problem approximation

− Simulation-based approaches (we will focus
on these)

• Simulation-based methods are of three types:

− Rollout (we will not discuss further)

− Approximation in value space

− Approximation in policy space



WHY DO WE USE SIMULATION?

• One reason: Computational complexity advan-
tage in computing sums/expectations involving a
very large number of terms

− Any sum
n
∑

i=1

ai

can be written as an expected value:

n
∑

i=1

ai =

n
∑

i=1

ξi
ai
ξi

= Eξ

{

ai
ξi

}

,

where ξ is any prob. distribution over {1, . . . , n}

− It can be approximated by generating many
samples {i1, . . . , ik} from {1, . . . , n}, accord-
ing to distribution ξ, and Monte Carlo aver-
aging:

n
∑

i=1

ai = Eξ

{

ai
ξi

}

≈
1

k

k
∑

t=1

ait
ξit

• Simulation is also convenient when an analytical
model of the system is unavailable, but a simula-
tion/computer model is possible.



APPROXIMATION IN VALUE AND

POLICY SPACE



APPROXIMATION IN VALUE SPACE

• Approximate J∗ or Jµ from a parametric class
J̃(i; r) where i is the current state and r = (r1, . . . , rm)
is a vector of “tunable” scalars weights

• Use J̃ in place of J∗ or Jµ in various algorithms
and computations

• Role of r: By adjusting r we can change the
“shape” of J̃ so that it is “close” to J∗ or Jµ

• Two key issues:

− The choice of parametric class J̃(i; r) (the
approximation architecture)

− Method for tuning the weights (“training”
the architecture)

• Success depends strongly on how these issues
are handled ... also on insight about the problem

• A simulator may be used, particularly when
there is no mathematical model of the system (but
there is a computer model)

• We will focus on simulation, but this is not the
only possibility

• We may also use parametric approximation for
Q-factors or cost function differences



APPROXIMATION ARCHITECTURES

• Divided in linear and nonlinear [i.e., linear or
nonlinear dependence of J̃(i; r) on r]

• Linear architectures are easier to train, but non-
linear ones (e.g., neural networks) are richer

• Computer chess example:

− Think of board position as state and move
as control

− Uses a feature-based position evaluator that
assigns a score (or approximate Q-factor) to
each position/move

Feature
Extraction

Weighting
of Features

Score

Features:
Material balance,
Mobility,
Safety, etc

Position Evaluator

• Relatively few special features and weights, and
multistep lookahead



LINEAR APPROXIMATION ARCHITECTURES

• Often, the features encode much of the nonlin-
earity inherent in the cost function approximated

• Then the approximation may be quite accurate
without a complicated architecture (as an extreme
example, the ideal feature is the true cost func-
tion)

• With well-chosen features, we can use a linear
architecture: J̃(i; r) = φ(i)′r, i = 1, . . . , n, or

J̃(r) = Φr =
s
∑

j=1

Φiri

Φ: the matrix whose rows are φ(i)′, i = 1, . . . , n,
Φi is the ith column of Φ

State i

Approximator
i Feature Extraction Mapping Feature Vector

Approximator ( )Feature Extraction Mapping Feature VectorFeature Extraction Mapping Feature Vector

Feature Extraction Mapping Feature Vector φ(i) Linear Cost
i) Linear Cost

i) Linear Cost
Approximator φ(i)′r

• This is approximation on the subspace

S = {Φr | r ∈ ℜs}

spanned by the columns of Φ (basis functions)

• Many examples of feature types: Polynomial
approximation, radial basis functions, etc



ILLUSTRATIONS: POLYNOMIAL TYPE

• Polynomial Approximation, e.g., a quadratic
approximating function. Let the state be i =
(i1, . . . , iq) (i.e., have q “dimensions”) and define

φ0(i) = 1, φk(i) = ik, φkm(i) = ikim, k,m = 1, . . . , q

Linear approximation architecture:

J̃(i; r) = r0 +

q
∑

k=1

rkik +

q
∑

k=1

q
∑

m=k

rkmikim,

where r has components r0, rk, and rkm.

• Interpolation: A subset I of special/representative
states is selected, and the parameter vector r has
one component ri per state i ∈ I. The approxi-
mating function is

J̃(i; r) = ri, i ∈ I,

J̃(i; r) = interpolation using the values at i ∈ I, i /∈ I

For example, piecewise constant, piecewise linear,
more general polynomial interpolations.



A DOMAIN SPECIFIC EXAMPLE

• Tetris game (used as testbed in competitions)

TERMINATION

......

• J∗(i): optimal score starting from position i

• Number of states > 2200 (for 10× 20 board)

• Success with just 22 features, readily recognized
by tetris players as capturing important aspects of
the board position (heights of columns, etc)



APPROX. PI - OPTION TO APPROX. Jµ OR Qµ

• Use simulation to approximate the cost Jµ of
the current policy µ

• Generate “improved” policy µ by minimizing in
(approx.) Bellman equation

Approximate Policy

Evaluation

Policy ImprovementGenerate “Improved” Policy µ

Initial Policy Controlled System Cost per Stage Vector
tion Matrix ( )

i, u, r) J̃µ(i, r)

Evaluate Approximate Cost Steady-State Distribution
Cost ( )

• Altenatively approximate the Q-factors of µ

Approximate Policy

Evaluation

Policy ImprovementGenerate “Improved” Policy µ

Evaluate Approximate Q-Factors

Approximate Policy Evaluation

Approximate Policy Evaluation µ(i) = arg minu∈U(i) Q̃µ(i, u, r)
Initial state ( ) Time

Initial Policy Controlled System Cost per Stage Vector
tion Matrix ( )

Q̃µ(i, u, r)



APPROXIMATING J∗ OR Q∗

• Approximation of the optimal cost function J∗

− Q-Learning: Use a simulation algorithm to
approximate the Q-factors

Q∗(i, u) = g(i, u) + α
n
∑

j=1

pij(u)J∗(j);

and the optimal costs

J∗(i) = min
u∈U(i)

Q∗(i, u)

− Bellman Error approach: Find r to

min
r

Ei

{

(

J̃(i; r)− (T J̃)(i; r)
)2
}

where Ei{·} is taken with respect to some
distribution over the states

− Approximate Linear Programming (we will
not discuss here)

• Q-learning can also be used with approxima-
tions

• Q-learning and Bellman error approach can also
be used for policy evaluation



APPROXIMATION IN POLICY SPACE

• A brief discussion; we will return to it later.

• Use parametrization µ(i; r) of policies with a
vector r = (r1, . . . , rs). Examples:

− Polynomial, e.g., µ(i; r) = r1 + r2 · i+ r3 · i2

− Linear feature-based

µ(i; r) = φ1(i) · r1 + φ2(i) · r2

• Optimize the cost over r. For example:

− Each value of r defines a stationary policy,
with cost starting at state i denoted by J̃(i; r).

− Let (p1, . . . , pn) be some probability distri-
bution over the states, and minimize over r

n
∑

i=1

piJ̃(i; r)

− Use a random search, gradient, or other method

• A special case: The parameterization of the
policies is indirect, through a cost approximation
architecture Ĵ , i.e.,

µ(i; r) ∈ arg min
u∈U(i)

n
∑

j=1

pij(u)
(

g(i, u, j) + αĴ(j; r)
)



APPROXIMATE POLICY EVALUATION

METHODS



DIRECT POLICY EVALUATION

• Approximate the cost of the current policy by
using least squares and simulation-generated cost
samples

• Amounts to projection of Jµ onto the approxi-
mation subspace

Subspace S = {Φr | r ∈ ℜs} Set

= 0

Direct Method: Projection of cost vector Jµ Π

µ ΠJµ

Direct Method: Projection of cost vector
( ) ( ) ( )Direct Method: Projection of cost vector Jµ

• Solution by least squares methods

• Regular and optimistic policy iteration

• Nonlinear approximation architectures may also
be used



DIRECT EVALUATION BY SIMULATION

• Projection by Monte Carlo Simulation: Com-
pute the projection ΠJµ of Jµ on subspace S =
{Φr | r ∈ ℜs}, with respect to a weighted Eu-
clidean norm ‖ · ‖ξ

• Equivalently, find Φr∗, where

r∗ = arg min
r∈ℜs

‖Φr−Jµ‖2ξ = arg min
r∈ℜs

n
∑

i=1

ξi
(

φ(i)′r−Jµ(i)
)2

• Setting to 0 the gradient at r∗,

r∗ =

(

n
∑

i=1

ξiφ(i)φ(i)′

)−1 n
∑

i=1

ξiφ(i)Jµ(i)

• Generate samples
{

(i1, Jµ(i1)), . . . , (ik, Jµ(ik))
}

using distribution ξ

• Approximate by Monte Carlo the two “expected
values” with low-dimensional calculations

r̂k =

(

k
∑

t=1

φ(it)φ(it)′

)−1
k
∑

t=1

φ(it)Jµ(it)

• Equivalent least squares alternative:

r̂k = arg min
r∈ℜs

k
∑

t=1

(

φ(it)′r − Jµ(it)
)2



INDIRECT POLICY EVALUATION

• An example: Galerkin approximation

• Solve the projected equation Φr = ΠTµ(Φr)
where Π is projection w/ respect to a suitable
weighted Euclidean norm

Subspace S = {Φr | r ∈ ℜs} Set

= 0

Subspace S = {Φr | r ∈ ℜs} Set

= 0

Direct Method: Projection of cost vector Jµ Π

µ ΠJµ

Tµ(Φr)

Φr = ΠTµ(Φr)

Indirect Method: Solving a projected form of Bellman’s equation

Projection onIndirect Method: Solving a projected form of Bellman’s equation

Direct Method: Projection of cost vector
( ) ( ) ( )Direct Method: Projection of cost vector Jµ

• Solution methods that use simulation (to man-
age calculation of Π)

− TD(λ): Stochastic iterative algorithm for solv-
ing Φr = ΠTµ(Φr)

− LSTD(λ): Solves a simulation-based approx-
imation w/ a standard solver

− LSPE(λ): A simulation-based form of pro-
jected value iteration; essentially

Φrk+1 = ΠTµ(Φrk) + simulation noise



BELLMAN EQUATION ERROR METHODS

• Another example of indirect approximate policy
evaluation:

min
r

‖Φr − Tµ(Φr)‖2ξ (∗)

where ‖ · ‖ξ is Euclidean norm, weighted with re-
spect to some distribution ξ

• It is closely related to the projected equation/Galerkin
approach (with a special choice of projection norm)

• Several ways to implement projected equation
and Bellman error methods by simulation. They
involve:

− Generating many random samples of states
ik using the distribution ξ

− Generating many samples of transitions (ik, jk)
using the policy µ

− Form a simulation-based approximation of
the optimality condition for projection prob-
lem or problem (*) (use sample averages in
place of inner products)

− Solve the Monte-Carlo approximation of the
optimality condition

• Issues for indirect methods: How to generate
the samples? How to calculate r efficiently?



ANOTHER INDIRECT METHOD: AGGREGATION

• A first idea: Group similar states together into
“aggregate states” x1, . . . , xs; assign a common
cost value ri to each group xi.

• Solve an “aggregate” DP problem, involving the
aggregate states, to obtain r = (r1, . . . , rs). This
is called hard aggregation

1 2 3 4 5 6 7 8 91 2 3 4 5 6 7 8 91 2 3 4 5 6 7 8 9

1 2 3 4 5 6 7 8 91 2 3 4 5 6 7 8 91 2 3 4 5 6 7 8 9

1 2 3 4 5 6 7 8 91 2 3 4 5 6 7 8 91 2 3 4 5 6 7 8 9

1 2 3 4 5 6 7 8 9 x1 x2

x3 x4

Φ =



























1 0 0 0

1 0 0 0

0 1 0 0

1 0 0 0

1 0 0 0

0 1 0 0

0 0 1 0

0 0 1 0

0 0 0 1



























• More general/mathematical view: Solve

Φr = ΦDTµ(Φr)

where the rows of D and Φ are prob. distributions
(e.g., D and Φ “aggregate” rows and columns of
the linear system J = TµJ)

• Compare with projected equation Φr = ΠTµ(Φr).
Note: ΦD is a projection in some interesting cases



AGGREGATION AS PROBLEM APPROXIMATION

according to pij(u), with cost

dxi

S

φjyQ

, j = 1i

), x ), y

Original System States Aggregate States

{

Original System States Aggregate States

{

|

Original System States Aggregate States

p̂xy(u) =

n∑

i=1

dxi

n∑

j=1

pij(u)φjy ,

Disaggregation Probabilities

{

Aggregation Probabilities

Disaggregation Probabilities

Aggregation Probabilities

Disaggregation Probabilities

{

Aggregation Probabilities

Disaggregation Probabilities

ĝ(x, u) =

n∑

i=1

dxi

n∑

j=1

pij(u)g(i, u, j)

, g(i, u, j)
Matrix Matrix

• Aggregation can be viewed as a systematic
approach for problem approximation. Main ele-
ments:

− Solve (exactly or approximately) the “ag-
gregate” problem by any kind of VI or PI
method (including simulation-based methods)

− Use the optimal cost of the aggregate prob-
lem to approximate the optimal cost of the
original problem

• Because an exact PI algorithm is used to solve
the approximate/aggregate problem the method
behaves more regularly than the projected equa-
tion approach



APPROXIMATE POLICY ITERATION

ISSUES



THEORETICAL BASIS OF APPROXIMATE PI

• If policies are approximately evaluated using an
approximation architecture such that

max
i

|J̃(i, rk)− Jµk(i)| ≤ δ, k = 0, 1, . . .

• If policy improvement is also approximate,

max
i

|(Tµk+1 J̃)(i, rk)−(T J̃)(i, rk)| ≤ ǫ, k = 0, 1, . . .

• Error bound: The sequence {µk} generated by
approximate policy iteration satisfies

lim sup
k→∞

max
i

(

Jµk(i)− J∗(i)
)

≤
ǫ+ 2αδ

(1− α)2

• Typical practical behavior: The method makes
steady progress up to a point and then the iterates
Jµk oscillate within a neighborhood of J∗.

• Oscillations are quite unpredictable.

− Some bad examples of oscillations have been
constructed.

− In practice oscillations between policies is
probably not the major concern.



THE ISSUE OF EXPLORATION

• To evaluate a policy µ, we need to generate cost
samples using that policy - this biases the simula-
tion by underrepresenting states that are unlikely
to occur under µ

• Cost-to-go estimates of underrepresented states
may be highly inaccurate

• This seriously impacts the improved policy µ

• This is known as inadequate exploration - a
particularly acute difficulty when the randomness
embodied in the transition probabilities is “rela-
tively small” (e.g., a deterministic system)

• Some remedies:

− Frequently restart the simulation and ensure
that the initial states employed form a rich
and representative subset

− Occasionally generate transitions that use a
randomly selected control rather than the
one dictated by the policy µ

− Other methods: Use two Markov chains (one
is the chain of the policy and is used to gen-
erate the transition sequence, the other is
used to generate the state sequence).



APPROXIMATING Q-FACTORS

• Given J̃(i; r), policy improvement requires a
model [knowledge of pij(u) for all controls u ∈
U(i)]

• Model-free alternative: Approximate Q-factors

Q̃(i, u; r) ≈
n
∑

j=1

pij(u)
(

g(i, u, j) + αJµ(j)
)

and use for policy improvement the minimization

µ(i) ∈ arg min
u∈U(i)

Q̃(i, u; r)

• r is an adjustable parameter vector and Q̃(i, u; r)
is a parametric architecture, such as

Q̃(i, u; r) =
s
∑

m=1

rmφm(i, u)

• We can adapt any of the cost approximation
approaches, e.g., projected equations, aggregation

• Use the Markov chain with states (i, u), so
pij(µ(i)) is the transition prob. to (j, µ(i)), 0 to
other (j, u′)

• Major concern: Acutely diminished exploration



SOME GENERAL ISSUES



STOCHASTIC ALGORITHMS: GENERALITIES

• Consider solution of a linear equation x = b +
Ax by using m simulation samples b + wk and
A+Wk, k = 1, . . . ,m, where wk,Wk are random,
e.g., “simulation noise”

• Think of x = b + Ax as approximate policy
evaluation (projected or aggregation equations)

• Stoch. approx. (SA) approach: For k = 1, . . . ,m

xk+1 = (1− γk)xk + γk
(

(b+ wk) + (A+Wk)xk

)

• Monte Carlo estimation (MCE) approach: Form
Monte Carlo estimates of b and A

bm =
1

m

m
∑

k=1

(b+ wk), Am =
1

m

m
∑

k=1

(A+Wk)

Then solve x = bm +Amx by matrix inversion

xm = (1−Am)−1bm

or iteratively

• TD(λ) and Q-learning are SA methods

• LSTD(λ) and LSPE(λ) are MCE methods



COSTS OR COST DIFFERENCES?

• Consider the exact policy improvement process.
To compare two controls u and u′ at x, we need

E
{

g(x, u, w)− g(x, u′, w) + α
(

Jµ(x)− Jµ(x
′)
)}

where x = f(x, u, w) and x′ = f(x, u′, w)

• Approximate Jµ(x) or

Dµ(x, x′) = Jµ(x)− Jµ(x′)?

• Approximating Dµ(x, x
′) avoids “noise differ-

encing”. This can make a big difference

• Important point: Dµ satisfies a Bellman equa-
tion for a system with “state” (x, x′)

Dµ(x, x′) = E
{

Gµ(x, x′, w) + αDµ(x, x
′)
}

where x = f
(

x, µ(x), w
)

, x′ = f
(

x′, µ(x′), w
)

and

Gµ(x, x′, w) = g
(

x, µ(x), w
)

− g
(

x′, µ(x′), w
)

• Dµ can be “learned” by the standard methods
(TD, LSTD, LSPE, Bellman error, aggregation,
etc). This is known as differential training.



AN EXAMPLE (FROM THE NDP TEXT)

• System and cost per stage:

xk+1 = xk + δuk, g(x, u) = δ(x2 + u2)

δ > 0 is very small; think of discretization of
continuous-time problem involving dx(t)/dt = u(t)

• Consider policy µ(x) = −2x. Its cost function
is

Jµ(x) =
5x2

4
(1 + δ) +O(δ2)

and its Q-factor is

Qµ(x, u) =
5x2

4
+ δ

(

9x2

4
+ u2 +

5

2
xu

)

+O(δ2)

• The important part for policy improvement is

δ

(

u2 +
5

2
xu

)

When Jµ(x) [or Qµ(x, u)] is approximated by
J̃µ(x; r) [or by Q̃µ(x, u; r)], it will be dominated

by 5x2

4 and will be “lost”


