
APPROXIMATE DYNAMIC PROGRAMMING

LECTURE 3

LECTURE OUTLINE

• Review of discounted DP

• Introduction to approximate DP

• Approximation architectures

• Simulation-based approximate policy iteration

• Approximate policy evaluation

• Some general issues about approximation and
simulation

REVIEW

DISCOUNTED PROBLEMS/BOUNDED COST

• Stationary system with arbitrary state space

xk+1 = f(xk, uk, wk), k = 0, 1, . . .

• Cost of a policy π = {µ0, µ1, . . .}

Jπ(x0) = lim
N→∞

E
wk

k=0,1,...

{

N−1
∑

k=0

αkg
(

xk, µk(xk), wk

)

}

with α < 1, and for someM , we have |g(x, u, w)| ≤
M for all (x, u, w)

• Shorthand notation for DP mappings (operate
on functions of state to produce other functions)

(TJ)(x) = min
u∈U(x)

E
w

{

g(x, u, w) + αJ
(

f(x, u, w)
)}

, ∀ x

TJ is the optimal cost function for the one-stage
problem with stage cost g and terminal cost αJ

• For any stationary policy µ

(TµJ)(x) = E
w

{

g
(

x, µ(x), w
)

+ αJ
(

f(x, µ(x), w)
)}

, ∀ x

MDP - TRANSITION PROBABILITY NOTATION

• We will mostly assume the system is an n-state
(controlled) Markov chain

• We will often switch to Markov chain notation

− States i = 1, . . . , n (instead of x)

− Transition probabilities pikik+1
(uk) [instead

of xk+1 = f(xk, uk, wk)]

− Stage cost g(ik, uk, ik+1) [instead of g(xk, uk, wk)]

− Cost functions J =
(

J(1), . . . , J(n)
)

(vec-
tors in ℜn)

• Cost of a policy π = {µ0, µ1, . . .}

Jπ(i) = lim
N→∞

E
ik

k=1,2,...

{

N−1
∑

k=0

αkg
(

ik, µk(ik), ik+1

)

| i0 = i

}

• Shorthand notation for DP mappings

(TJ)(i) = min
u∈U(i)

n
∑

j=1

pij(u)
(

g(i, u, j)+αJ(j)
)

, i = 1, . . . , n,

(TµJ)(i) =

n
∑

j=1

pij
(

µ(i)
)(

g
(

i, µ(i), j
)

+αJ(j)
)

, i = 1, . . . , n

“SHORTHAND” THEORY – A SUMMARY

• Bellman’s equation: J∗ = TJ∗, Jµ = TµJµ or

J∗(i) = min
u∈U(i)

n
∑

j=1

pij(u)
(

g(i, u, j)+αJ∗(j)
)

, ∀ i

Jµ(i) =
n
∑

j=1

pij
(

µ(i)
)(

g
(

i, µ(i), j
)

+ αJµ(j)
)

, ∀ i

• Optimality condition:

µ: optimal <==> TµJ∗ = TJ∗

i.e.,

µ(i) ∈ arg min
u∈U(i)

n
∑

j=1

pij(u)
(

g(i, u, j)+αJ∗(j)
)

, ∀ i

THE TWO MAIN ALGORITHMS: VI AND PI

• Value iteration: For any J ∈ ℜn

J∗(i) = lim
k→∞

(T kJ)(i), ∀ i = 1, . . . , n

• Policy iteration: Given µk

− Policy evaluation: Find Jµk by solving

Jµk (i) =

n
∑

j=1

pij
(

µ
k(i)
)(

g
(

i, µ
k(i), j

)

+αJµk (j)
)

, i = 1, . . . , n

or Jµk = TµkJµk

− Policy improvement: Let µk+1 be such that

µ
k+1(i) ∈ arg min

u∈U(i)

n
∑

j=1

pij(u)
(

g(i, u, j)+αJµk (j)
)

, ∀ i

or Tµk+1Jµk = TJµk

• Policy evaluation is equivalent to solving an
n× n linear system of equations

• For large n, exact PI is out of the question. We
use instead optimistic PI (policy evaluation with
a few VIs)

APPROXIMATE DP

GENERAL ORIENTATION TO ADP

• ADP (late 80s - present) is a breakthrough
methodology that allows the application of DP to
problems with many or infinite number of states.

• Other names for ADP are:

− “reinforcement learning” (RL).

− “neuro-dynamic programming” (NDP).

− “adaptive dynamic programming” (ADP).

• We will mainly adopt an n-state discounted
model (the easiest case - but think of HUGE n).

• Extensions to other DP models (continuous
space, continuous-time, not discounted) are possi-
ble (but more quirky). We will set aside for later.

• There are many approaches:

− Problem approximation

− Simulation-based approaches (we will focus
on these)

• Simulation-based methods are of three types:

− Rollout (we will not discuss further)

− Approximation in value space

− Approximation in policy space

WHY DO WE USE SIMULATION?

• One reason: Computational complexity advan-
tage in computing sums/expectations involving a
very large number of terms

− Any sum
n
∑

i=1

ai

can be written as an expected value:

n
∑

i=1

ai =

n
∑

i=1

ξi
ai
ξi

= Eξ

{

ai
ξi

}

,

where ξ is any prob. distribution over {1, . . . , n}

− It can be approximated by generating many
samples {i1, . . . , ik} from {1, . . . , n}, accord-
ing to distribution ξ, and Monte Carlo aver-
aging:

n
∑

i=1

ai = Eξ

{

ai
ξi

}

≈
1

k

k
∑

t=1

ait
ξit

• Simulation is also convenient when an analytical
model of the system is unavailable, but a simula-
tion/computer model is possible.

APPROXIMATION IN VALUE AND

POLICY SPACE

APPROXIMATION IN VALUE SPACE

• Approximate J∗ or Jµ from a parametric class
J̃(i; r) where i is the current state and r = (r1, . . . , rm)
is a vector of “tunable” scalars weights

• Use J̃ in place of J∗ or Jµ in various algorithms
and computations

• Role of r: By adjusting r we can change the
“shape” of J̃ so that it is “close” to J∗ or Jµ

• Two key issues:

− The choice of parametric class J̃(i; r) (the
approximation architecture)

− Method for tuning the weights (“training”
the architecture)

• Success depends strongly on how these issues
are handled ... also on insight about the problem

• A simulator may be used, particularly when
there is no mathematical model of the system (but
there is a computer model)

• We will focus on simulation, but this is not the
only possibility

• We may also use parametric approximation for
Q-factors or cost function differences

APPROXIMATION ARCHITECTURES

• Divided in linear and nonlinear [i.e., linear or
nonlinear dependence of J̃(i; r) on r]

• Linear architectures are easier to train, but non-
linear ones (e.g., neural networks) are richer

• Computer chess example:

− Think of board position as state and move
as control

− Uses a feature-based position evaluator that
assigns a score (or approximate Q-factor) to
each position/move

Feature
Extraction

Weighting
of Features

Score

Features:
Material balance,
Mobility,
Safety, etc

Position Evaluator

• Relatively few special features and weights, and
multistep lookahead

LINEAR APPROXIMATION ARCHITECTURES

• Often, the features encode much of the nonlin-
earity inherent in the cost function approximated

• Then the approximation may be quite accurate
without a complicated architecture (as an extreme
example, the ideal feature is the true cost func-
tion)

• With well-chosen features, we can use a linear
architecture: J̃(i; r) = φ(i)′r, i = 1, . . . , n, or

J̃(r) = Φr =
s
∑

j=1

Φiri

Φ: the matrix whose rows are φ(i)′, i = 1, . . . , n,
Φi is the ith column of Φ

State i

Approximator
i Feature Extraction Mapping Feature Vector

Approximator ()Feature Extraction Mapping Feature VectorFeature Extraction Mapping Feature Vector

Feature Extraction Mapping Feature Vector φ(i) Linear Cost
i) Linear Cost

i) Linear Cost
Approximator φ(i)′r

• This is approximation on the subspace

S = {Φr | r ∈ ℜs}

spanned by the columns of Φ (basis functions)

• Many examples of feature types: Polynomial
approximation, radial basis functions, etc

ILLUSTRATIONS: POLYNOMIAL TYPE

• Polynomial Approximation, e.g., a quadratic
approximating function. Let the state be i =
(i1, . . . , iq) (i.e., have q “dimensions”) and define

φ0(i) = 1, φk(i) = ik, φkm(i) = ikim, k,m = 1, . . . , q

Linear approximation architecture:

J̃(i; r) = r0 +

q
∑

k=1

rkik +

q
∑

k=1

q
∑

m=k

rkmikim,

where r has components r0, rk, and rkm.

• Interpolation: A subset I of special/representative
states is selected, and the parameter vector r has
one component ri per state i ∈ I. The approxi-
mating function is

J̃(i; r) = ri, i ∈ I,

J̃(i; r) = interpolation using the values at i ∈ I, i /∈ I

For example, piecewise constant, piecewise linear,
more general polynomial interpolations.

A DOMAIN SPECIFIC EXAMPLE

• Tetris game (used as testbed in competitions)

TERMINATION

......

• J∗(i): optimal score starting from position i

• Number of states > 2200 (for 10× 20 board)

• Success with just 22 features, readily recognized
by tetris players as capturing important aspects of
the board position (heights of columns, etc)

APPROX. PI - OPTION TO APPROX. Jµ OR Qµ

• Use simulation to approximate the cost Jµ of
the current policy µ

• Generate “improved” policy µ by minimizing in
(approx.) Bellman equation

Approximate Policy

Evaluation

Policy ImprovementGenerate “Improved” Policy µ

Initial Policy Controlled System Cost per Stage Vector
tion Matrix ()

i, u, r) J̃µ(i, r)

Evaluate Approximate Cost Steady-State Distribution
Cost ()

• Altenatively approximate the Q-factors of µ

Approximate Policy

Evaluation

Policy ImprovementGenerate “Improved” Policy µ

Evaluate Approximate Q-Factors

Approximate Policy Evaluation

Approximate Policy Evaluation µ(i) = arg minu∈U(i) Q̃µ(i, u, r)
Initial state () Time

Initial Policy Controlled System Cost per Stage Vector
tion Matrix ()

Q̃µ(i, u, r)

APPROXIMATING J∗ OR Q∗

• Approximation of the optimal cost function J∗

− Q-Learning: Use a simulation algorithm to
approximate the Q-factors

Q∗(i, u) = g(i, u) + α
n
∑

j=1

pij(u)J∗(j);

and the optimal costs

J∗(i) = min
u∈U(i)

Q∗(i, u)

− Bellman Error approach: Find r to

min
r

Ei

{

(

J̃(i; r)− (T J̃)(i; r)
)2
}

where Ei{·} is taken with respect to some
distribution over the states

− Approximate Linear Programming (we will
not discuss here)

• Q-learning can also be used with approxima-
tions

• Q-learning and Bellman error approach can also
be used for policy evaluation

APPROXIMATION IN POLICY SPACE

• A brief discussion; we will return to it later.

• Use parametrization µ(i; r) of policies with a
vector r = (r1, . . . , rs). Examples:

− Polynomial, e.g., µ(i; r) = r1 + r2 · i+ r3 · i2

− Linear feature-based

µ(i; r) = φ1(i) · r1 + φ2(i) · r2

• Optimize the cost over r. For example:

− Each value of r defines a stationary policy,
with cost starting at state i denoted by J̃(i; r).

− Let (p1, . . . , pn) be some probability distri-
bution over the states, and minimize over r

n
∑

i=1

piJ̃(i; r)

− Use a random search, gradient, or other method

• A special case: The parameterization of the
policies is indirect, through a cost approximation
architecture Ĵ , i.e.,

µ(i; r) ∈ arg min
u∈U(i)

n
∑

j=1

pij(u)
(

g(i, u, j) + αĴ(j; r)
)

APPROXIMATE POLICY EVALUATION

METHODS

DIRECT POLICY EVALUATION

• Approximate the cost of the current policy by
using least squares and simulation-generated cost
samples

• Amounts to projection of Jµ onto the approxi-
mation subspace

Subspace S = {Φr | r ∈ ℜs} Set

= 0

Direct Method: Projection of cost vector Jµ Π

µ ΠJµ

Direct Method: Projection of cost vector
() () ()Direct Method: Projection of cost vector Jµ

• Solution by least squares methods

• Regular and optimistic policy iteration

• Nonlinear approximation architectures may also
be used

DIRECT EVALUATION BY SIMULATION

• Projection by Monte Carlo Simulation: Com-
pute the projection ΠJµ of Jµ on subspace S =
{Φr | r ∈ ℜs}, with respect to a weighted Eu-
clidean norm ‖ · ‖ξ

• Equivalently, find Φr∗, where

r∗ = arg min
r∈ℜs

‖Φr−Jµ‖2ξ = arg min
r∈ℜs

n
∑

i=1

ξi
(

φ(i)′r−Jµ(i)
)2

• Setting to 0 the gradient at r∗,

r∗ =

(

n
∑

i=1

ξiφ(i)φ(i)′

)−1 n
∑

i=1

ξiφ(i)Jµ(i)

• Generate samples
{

(i1, Jµ(i1)), . . . , (ik, Jµ(ik))
}

using distribution ξ

• Approximate by Monte Carlo the two “expected
values” with low-dimensional calculations

r̂k =

(

k
∑

t=1

φ(it)φ(it)′

)−1
k
∑

t=1

φ(it)Jµ(it)

• Equivalent least squares alternative:

r̂k = arg min
r∈ℜs

k
∑

t=1

(

φ(it)′r − Jµ(it)
)2

INDIRECT POLICY EVALUATION

• An example: Galerkin approximation

• Solve the projected equation Φr = ΠTµ(Φr)
where Π is projection w/ respect to a suitable
weighted Euclidean norm

Subspace S = {Φr | r ∈ ℜs} Set

= 0

Subspace S = {Φr | r ∈ ℜs} Set

= 0

Direct Method: Projection of cost vector Jµ Π

µ ΠJµ

Tµ(Φr)

Φr = ΠTµ(Φr)

Indirect Method: Solving a projected form of Bellman’s equation

Projection onIndirect Method: Solving a projected form of Bellman’s equation

Direct Method: Projection of cost vector
() () ()Direct Method: Projection of cost vector Jµ

• Solution methods that use simulation (to man-
age calculation of Π)

− TD(λ): Stochastic iterative algorithm for solv-
ing Φr = ΠTµ(Φr)

− LSTD(λ): Solves a simulation-based approx-
imation w/ a standard solver

− LSPE(λ): A simulation-based form of pro-
jected value iteration; essentially

Φrk+1 = ΠTµ(Φrk) + simulation noise

BELLMAN EQUATION ERROR METHODS

• Another example of indirect approximate policy
evaluation:

min
r

‖Φr − Tµ(Φr)‖2ξ (∗)

where ‖ · ‖ξ is Euclidean norm, weighted with re-
spect to some distribution ξ

• It is closely related to the projected equation/Galerkin
approach (with a special choice of projection norm)

• Several ways to implement projected equation
and Bellman error methods by simulation. They
involve:

− Generating many random samples of states
ik using the distribution ξ

− Generating many samples of transitions (ik, jk)
using the policy µ

− Form a simulation-based approximation of
the optimality condition for projection prob-
lem or problem (*) (use sample averages in
place of inner products)

− Solve the Monte-Carlo approximation of the
optimality condition

• Issues for indirect methods: How to generate
the samples? How to calculate r efficiently?

ANOTHER INDIRECT METHOD: AGGREGATION

• A first idea: Group similar states together into
“aggregate states” x1, . . . , xs; assign a common
cost value ri to each group xi.

• Solve an “aggregate” DP problem, involving the
aggregate states, to obtain r = (r1, . . . , rs). This
is called hard aggregation

1 2 3 4 5 6 7 8 91 2 3 4 5 6 7 8 91 2 3 4 5 6 7 8 9

1 2 3 4 5 6 7 8 91 2 3 4 5 6 7 8 91 2 3 4 5 6 7 8 9

1 2 3 4 5 6 7 8 91 2 3 4 5 6 7 8 91 2 3 4 5 6 7 8 9

1 2 3 4 5 6 7 8 9 x1 x2

x3 x4

Φ =

1 0 0 0

1 0 0 0

0 1 0 0

1 0 0 0

1 0 0 0

0 1 0 0

0 0 1 0

0 0 1 0

0 0 0 1

• More general/mathematical view: Solve

Φr = ΦDTµ(Φr)

where the rows of D and Φ are prob. distributions
(e.g., D and Φ “aggregate” rows and columns of
the linear system J = TµJ)

• Compare with projected equation Φr = ΠTµ(Φr).
Note: ΦD is a projection in some interesting cases

AGGREGATION AS PROBLEM APPROXIMATION

according to pij(u), with cost

dxi

S

φjyQ

, j = 1i

), x), y

Original System States Aggregate States

{

Original System States Aggregate States

{

|

Original System States Aggregate States

p̂xy(u) =

n∑

i=1

dxi

n∑

j=1

pij(u)φjy ,

Disaggregation Probabilities

{

Aggregation Probabilities

Disaggregation Probabilities

Aggregation Probabilities

Disaggregation Probabilities

{

Aggregation Probabilities

Disaggregation Probabilities

ĝ(x, u) =

n∑

i=1

dxi

n∑

j=1

pij(u)g(i, u, j)

, g(i, u, j)
Matrix Matrix

• Aggregation can be viewed as a systematic
approach for problem approximation. Main ele-
ments:

− Solve (exactly or approximately) the “ag-
gregate” problem by any kind of VI or PI
method (including simulation-based methods)

− Use the optimal cost of the aggregate prob-
lem to approximate the optimal cost of the
original problem

• Because an exact PI algorithm is used to solve
the approximate/aggregate problem the method
behaves more regularly than the projected equa-
tion approach

APPROXIMATE POLICY ITERATION

ISSUES

THEORETICAL BASIS OF APPROXIMATE PI

• If policies are approximately evaluated using an
approximation architecture such that

max
i

|J̃(i, rk)− Jµk(i)| ≤ δ, k = 0, 1, . . .

• If policy improvement is also approximate,

max
i

|(Tµk+1 J̃)(i, rk)−(T J̃)(i, rk)| ≤ ǫ, k = 0, 1, . . .

• Error bound: The sequence {µk} generated by
approximate policy iteration satisfies

lim sup
k→∞

max
i

(

Jµk(i)− J∗(i)
)

≤
ǫ+ 2αδ

(1− α)2

• Typical practical behavior: The method makes
steady progress up to a point and then the iterates
Jµk oscillate within a neighborhood of J∗.

• Oscillations are quite unpredictable.

− Some bad examples of oscillations have been
constructed.

− In practice oscillations between policies is
probably not the major concern.

THE ISSUE OF EXPLORATION

• To evaluate a policy µ, we need to generate cost
samples using that policy - this biases the simula-
tion by underrepresenting states that are unlikely
to occur under µ

• Cost-to-go estimates of underrepresented states
may be highly inaccurate

• This seriously impacts the improved policy µ

• This is known as inadequate exploration - a
particularly acute difficulty when the randomness
embodied in the transition probabilities is “rela-
tively small” (e.g., a deterministic system)

• Some remedies:

− Frequently restart the simulation and ensure
that the initial states employed form a rich
and representative subset

− Occasionally generate transitions that use a
randomly selected control rather than the
one dictated by the policy µ

− Other methods: Use two Markov chains (one
is the chain of the policy and is used to gen-
erate the transition sequence, the other is
used to generate the state sequence).

APPROXIMATING Q-FACTORS

• Given J̃(i; r), policy improvement requires a
model [knowledge of pij(u) for all controls u ∈
U(i)]

• Model-free alternative: Approximate Q-factors

Q̃(i, u; r) ≈
n
∑

j=1

pij(u)
(

g(i, u, j) + αJµ(j)
)

and use for policy improvement the minimization

µ(i) ∈ arg min
u∈U(i)

Q̃(i, u; r)

• r is an adjustable parameter vector and Q̃(i, u; r)
is a parametric architecture, such as

Q̃(i, u; r) =
s
∑

m=1

rmφm(i, u)

• We can adapt any of the cost approximation
approaches, e.g., projected equations, aggregation

• Use the Markov chain with states (i, u), so
pij(µ(i)) is the transition prob. to (j, µ(i)), 0 to
other (j, u′)

• Major concern: Acutely diminished exploration

SOME GENERAL ISSUES

STOCHASTIC ALGORITHMS: GENERALITIES

• Consider solution of a linear equation x = b +
Ax by using m simulation samples b + wk and
A+Wk, k = 1, . . . ,m, where wk,Wk are random,
e.g., “simulation noise”

• Think of x = b + Ax as approximate policy
evaluation (projected or aggregation equations)

• Stoch. approx. (SA) approach: For k = 1, . . . ,m

xk+1 = (1− γk)xk + γk
(

(b+ wk) + (A+Wk)xk

)

• Monte Carlo estimation (MCE) approach: Form
Monte Carlo estimates of b and A

bm =
1

m

m
∑

k=1

(b+ wk), Am =
1

m

m
∑

k=1

(A+Wk)

Then solve x = bm +Amx by matrix inversion

xm = (1−Am)−1bm

or iteratively

• TD(λ) and Q-learning are SA methods

• LSTD(λ) and LSPE(λ) are MCE methods

COSTS OR COST DIFFERENCES?

• Consider the exact policy improvement process.
To compare two controls u and u′ at x, we need

E
{

g(x, u, w)− g(x, u′, w) + α
(

Jµ(x)− Jµ(x
′)
)}

where x = f(x, u, w) and x′ = f(x, u′, w)

• Approximate Jµ(x) or

Dµ(x, x′) = Jµ(x)− Jµ(x′)?

• Approximating Dµ(x, x
′) avoids “noise differ-

encing”. This can make a big difference

• Important point: Dµ satisfies a Bellman equa-
tion for a system with “state” (x, x′)

Dµ(x, x′) = E
{

Gµ(x, x′, w) + αDµ(x, x
′)
}

where x = f
(

x, µ(x), w
)

, x′ = f
(

x′, µ(x′), w
)

and

Gµ(x, x′, w) = g
(

x, µ(x), w
)

− g
(

x′, µ(x′), w
)

• Dµ can be “learned” by the standard methods
(TD, LSTD, LSPE, Bellman error, aggregation,
etc). This is known as differential training.

AN EXAMPLE (FROM THE NDP TEXT)

• System and cost per stage:

xk+1 = xk + δuk, g(x, u) = δ(x2 + u2)

δ > 0 is very small; think of discretization of
continuous-time problem involving dx(t)/dt = u(t)

• Consider policy µ(x) = −2x. Its cost function
is

Jµ(x) =
5x2

4
(1 + δ) +O(δ2)

and its Q-factor is

Qµ(x, u) =
5x2

4
+ δ

(

9x2

4
+ u2 +

5

2
xu

)

+O(δ2)

• The important part for policy improvement is

δ

(

u2 +
5

2
xu

)

When Jµ(x) [or Qµ(x, u)] is approximated by
J̃µ(x; r) [or by Q̃µ(x, u; r)], it will be dominated

by 5x2

4 and will be “lost”

