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APPROXIMATE DYNAMIC PROGRAMMING

BRIEF OUTLINE I

• Our subject:

− Large-scale DP based on approximations and
in part on simulation.

− This has been a research area of great inter-
est for the last 25 years known under various
names (e.g., reinforcement learning, neuro-
dynamic programming)

− Emerged through an enormously fruitful cross-
fertilization of ideas from artificial intelligence
and optimization/control theory

− Deals with control of dynamic systems under
uncertainty, but applies more broadly (e.g.,
discrete deterministic optimization)

− A vast range of applications in control the-
ory, operations research, artificial intelligence,
and beyond ...

− The subject is broad with rich variety of
theory/math, algorithms, and applications.
Our focus will be mostly on algorithms ...
less on theory and modeling



APPROXIMATE DYNAMIC PROGRAMMING

BRIEF OUTLINE II

• Our aim:

− A state-of-the-art account of some of the ma-
jor topics at a graduate level

− Show how to use approximation and simula-
tion to address the dual curses of DP: di-
mensionality and modeling

• Our 6-lecture plan:

− Two lectures on exact DP with emphasis on
infinite horizon problems and issues of large-
scale computational methods

− One lecture on general issues of approxima-
tion and simulation for large-scale problems

− One lecture on approximate policy iteration
based on temporal differences (TD)/projected
equations/Galerkin approximation

− One lecture on aggregation methods

− One lecture on stochastic approximation, Q-
learning, and other methods



APPROXIMATE DYNAMIC PROGRAMMING

LECTURE 1

LECTURE OUTLINE

• Introduction to DP and approximate DP

• Finite horizon problems

• The DP algorithm for finite horizon problems

• Infinite horizon problems

• Basic theory of discounted infinite horizon prob-
lems



DP AS AN OPTIMIZATION METHODOLOGY

• Generic optimization problem:

min
u∈U

g(u)

where u is the optimization/decision variable, g(u)
is the cost function, and U is the constraint set

• Categories of problems:

− Discrete (U is finite) or continuous

− Linear (g is linear and U is polyhedral) or
nonlinear

− Stochastic or deterministic: In stochastic prob-
lems the cost involves a stochastic parameter
w, which is averaged, i.e., it has the form

g(u) = Ew

{

G(u,w)
}

where w is a random parameter.

• DP deals with multistage stochastic problems

− Information about w is revealed in stages

− Decisions are also made in stages and make
use of the available information

− Its methodology is “different”



BASIC STRUCTURE OF STOCHASTIC DP

• Discrete-time system

xk+1 = fk(xk, uk, wk), k = 0, 1, . . . , N − 1

− k: Discrete time

− xk: State; summarizes past information that
is relevant for future optimization

− uk: Control; decision to be selected at time
k from a given set

− wk: Random parameter (also called “distur-
bance” or “noise” depending on the context)

− N : Horizon or number of times control is
applied

• Cost function that is additive over time

E

{

gN (xN ) +
N−1
∑

k=0

gk(xk, uk, wk)

}

• Alternative system description: P (xk+1 | xk, uk)

xk+1 = wk with P (wk | xk, uk) = P (xk+1 | xk, uk)



INVENTORY CONTROL EXAMPLE

Inventory
System

Stock Ordered at
Period k

Stock at Period k Stock at Period k + 1

Demand at Period k

xk

wk

xk  + 1 = xk  + uk -  wk

uk
Cost of P e riod k

c uk + r (xk  + uk - wk)

• Discrete-time system

xk+1 = fk(xk, uk, wk) = xk + uk − wk

• Cost function that is additive over time

E

{

gN (xN ) +
N−1
∑

k=0

gk(xk, uk, wk)

}

= E

{

N−1
∑

k=0

(

cuk + r(xk + uk − wk)
)

}



ADDITIONAL ASSUMPTIONS

• Probability distribution of wk does not depend
on past values wk−1, . . . , w0, but may depend on
xk and uk

− Otherwise past values of w, x, or u would be
useful for future optimization

• The constraint set from which uk is chosen at
time k depends at most on xk, not on prior x or
u

• Optimization over policies (also called feedback
control laws): These are rules/functions

uk = µk(xk), k = 0, . . . , N − 1

that map state/inventory to control/order (closed-
loop optimization, use of feedback)

• MAJOR DISTINCTION: We minimize over se-
quences of functions (mapping inventory to order)

{µ0, µ1, . . . , µN−1}

NOT over sequences of controls/orders

{u0, u1, . . . , uN−1}



GENERIC FINITE-HORIZON PROBLEM

• System xk+1 = fk(xk, uk, wk), k = 0, . . . , N−1

• Control contraints uk ∈ Uk(xk)

• Probability distribution Pk(· | xk, uk) of wk

• Policies π = {µ0, . . . , µN−1}, where µk maps
states xk into controls uk = µk(xk) and is such
that µk(xk) ∈ Uk(xk) for all xk

• Expected cost of π starting at x0 is

Jπ(x0) = E

{

gN (xN ) +
N−1
∑

k=0

gk(xk, µk(xk), wk)

}

• Optimal cost function

J∗(x0) = min
π

Jπ(x0)

• Optimal policy π∗ satisfies

Jπ∗(x0) = J∗(x0)

When produced by DP, π∗ is independent of x0.



PRINCIPLE OF OPTIMALITY

• Let π∗ = {µ∗

0, µ
∗

1, . . . , µ
∗

N−1} be optimal policy

• Consider the “tail subproblem” whereby we are
at xk at time k and wish to minimize the “cost-
to-go” from time k to time N

E

{

gN (xN ) +

N−1
∑

ℓ=k

gℓ
(

xℓ, µℓ(xℓ), wℓ

)

}

and the “tail policy” {µ∗

k, µ
∗

k+1, . . . , µ
∗

N−1}

Tail Subproblem

Timek0

x
k

N

• Principle of optimality: The tail policy is opti-
mal for the tail subproblem (optimization of the
future does not depend on what we did in the past)

• DP solves ALL the tail subroblems

• At the generic step, it solves ALL tail subprob-
lems of a given time length, using the solution of
the tail subproblems of shorter time length



DP ALGORITHM

• Jk(xk): opt. cost of tail problem starting at xk

• Initial condition:

JN (xN ) = gN (xN )

Go backwards, k = N − 1, . . . , 0, using

Jk(xk) = min
uk∈Uk(xk)

E
wk

{

gk(xk, uk, wk)

+ Jk+1

(

fk(xk, uk, wk)
)}

,

i.e., to solve tail subproblem at time k minimize

kth-stage cost + Opt. cost of next tail problem

starting from next state at time k + 1

• Then J0(x0), generated at the last step, is equal
to the optimal cost J∗(x0). Also, the policy

π∗ = {µ∗

0, . . . , µ
∗

N−1}

where µ∗

k(xk) minimizes in the right side above for
each xk and k, is optimal

• Proof by induction



PRACTICAL DIFFICULTIES OF DP

• The curse of dimensionality

− Exponential growth of the computational and
storage requirements as the number of state
variables and control variables increases

− Quick explosion of the number of states in
combinatorial problems

• The curse of modeling

− Sometimes a simulator of the system is easier
to construct than a model

• There may be real-time solution constraints

− A family of problems may be addressed. The
data of the problem to be solved is given with
little advance notice

− The problem data may change as the system
is controlled – need for on-line replanning

• All of the above are motivations for approxi-
mation and simulation



A MAJOR IDEA: COST APPROXIMATION

• Use a policy computed from the DP equation
where the optimal cost-to-go function Jk+1 is re-
placed by an approximation J̃k+1.

• Apply µk(xk), which attains the minimum in

min
uk∈Uk(xk)

E
{

gk(xk, uk, wk)+J̃k+1

(

fk(xk, uk, wk)
)

}

• Some approaches:

(a) Problem Approximation: Use J̃k derived from
a related but simpler problem

(b) Parametric Cost-to-Go Approximation: Use
as J̃k a function of a suitable parametric
form, whose parameters are tuned by some
heuristic or systematic scheme (we will mostly
focus on this)

− This is a major portion of Reinforcement
Learning/Neuro-Dynamic Programming

(c) Rollout Approach: Use as J̃k the cost of
some suboptimal policy, which is calculated
either analytically or by simulation



ROLLOUT ALGORITHMS

• At each k and state xk, use the control µk(xk)
that minimizes in

min
uk∈Uk(xk)

E
{

gk(xk, uk, wk)+J̃k+1

(

fk(xk, uk, wk)
)}

,

where J̃k+1 is the cost-to-go of some heuristic pol-
icy (called the base policy).

• Cost improvement property: The rollout algo-
rithm achieves no worse (and usually much better)
cost than the base policy starting from the same
state.

• Main difficulty: Calculating J̃k+1(x) may be
computationally intensive if the cost-to-go of the
base policy cannot be analytically calculated.

− May involve Monte Carlo simulation if the
problem is stochastic.

− Things improve in the deterministic case (an
important application is discrete optimiza-
tion).

− Connection w/ Model Predictive Control (MPC).



INFINITE HORIZON PROBLEMS

• Same as the basic problem, but:

− The number of stages is infinite.

− The system is stationary.

• Total cost problems: Minimize

Jπ(x0) = lim
N→∞

E
wk

k=0,1,...

{

N−1
∑

k=0

αkg
(

xk, µk(xk), wk

)

}

− Discounted problems (α < 1, bounded g)

− Stochastic shortest path problems (α = 1,
finite-state system with a termination state)
- we will discuss sparringly

− Discounted and undiscounted problems with
unbounded cost per stage - we will not cover

• Average cost problems - we will not cover

• Infinite horizon characteristics:

− Challenging analysis, elegance of solutions
and algorithms

− Stationary policies π = {µ, µ, . . .} and sta-
tionary forms of DP play a special role



DISCOUNTED PROBLEMS/BOUNDED COST

• Stationary system

xk+1 = f(xk, uk, wk), k = 0, 1, . . .

• Cost of a policy π = {µ0, µ1, . . .}

Jπ(x0) = lim
N→∞

E
wk

k=0,1,...

{

N−1
∑

k=0

αkg
(

xk, µk(xk), wk

)

}

with α < 1, and g is bounded [for some M , we
have |g(x, u, w)| ≤ M for all (x, u, w)]

• Optimal cost function: J∗(x) = minπ Jπ(x)

• Boundedness of g guarantees that all costs are
well-defined and bounded:

∣

∣Jπ(x)
∣

∣ ≤ M
1−α

• All spaces are arbitrary - only boundedness of
g is important (there are math fine points, e.g.
measurability, but they don’t matter in practice)

• Important special case: All underlying spaces
finite; a (finite spaces) Markovian Decision Prob-
lem or MDP

• All algorithms ultimately work with a finite
spaces MDP approximating the original problem



SHORTHAND NOTATION FOR DP MAPPINGS

• For any function J of x, denote

(TJ)(x) = min
u∈U(x)

E
w

{

g(x, u, w) + αJ
(

f(x, u, w)
)}

, ∀ x

• TJ is the optimal cost function for the one-
stage problem with stage cost g and terminal cost
function αJ .

• T operates on bounded functions of x to pro-
duce other bounded functions of x

• For any stationary policy µ, denote

(TµJ)(x) = E
w

{

g
(

x, µ(x), w
)

+ αJ
(

f(x, µ(x), w)
)}

, ∀ x

• The critical structure of the problem is cap-
tured in T and Tµ

• The entire theory of discounted problems can
be developed in shorthand using T and Tµ

• This is true for many other DP problems



FINITE-HORIZON COST EXPRESSIONS

• Consider anN -stage policy πN
0 = {µ0, µ1, . . . , µN−1}

with a terminal cost J :

JπN
0
(x0) = E

{

αNJ(xk) +
N−1
∑

ℓ=0

αℓg
(

xℓ, µℓ(xℓ), wℓ

)

}

= E

{

g
(

x0, µ0(x0), w0

)

+ αJπN
1
(x1)

}

= (Tµ0
JπN

1
)(x0)

where πN
1 = {µ1, µ2, . . . , µN−1}

• By induction we have

JπN
0
(x) = (Tµ0

Tµ1
· · ·TµN−1

J)(x), ∀ x

• For a stationary policy µ the N -stage cost func-
tion (with terminal cost J) is

JπN
0

= TN
µ J

where TN
µ is the N -fold composition of Tµ

• Similarly the optimal N -stage cost function
(with terminal cost J) is TNJ

• TNJ = T (TN−1J) is just the DP algorithm



“SHORTHAND” THEORY – A SUMMARY

• Infinite horizon cost function expressions [with
J0(x) ≡ 0]

Jπ(x) = lim
N→∞

(Tµ0
Tµ1

· · ·TµN
J0)(x), Jµ(x) = lim

N→∞

(TN
µ J0)(x)

• Bellman’s equation: J∗ = TJ∗, Jµ = TµJµ

• Optimality condition:

µ: optimal <==> TµJ∗ = TJ∗

• Value iteration: For any (bounded) J

J∗(x) = lim
k→∞

(T kJ)(x), ∀ x

• Policy iteration: Given µk,

− Policy evaluation: Find Jµk by solving

Jµk = TµkJµk

− Policy improvement: Find µk+1 such that

Tµk+1Jµk = TJµk



TWO KEY PROPERTIES

• Monotonicity property: For any J and J ′ such
that J(x) ≤ J ′(x) for all x, and any µ

(TJ)(x) ≤ (TJ ′)(x), ∀ x,

(TµJ)(x) ≤ (TµJ ′)(x), ∀ x.

• Constant Shift property: For any J , any scalar
r, and any µ

(

T (J + re)
)

(x) = (TJ)(x) + αr, ∀ x,

(

Tµ(J + re)
)

(x) = (TµJ)(x) + αr, ∀ x,

where e is the unit function [e(x) ≡ 1].

• Monotonicity is present in all DP models (undis-
counted, etc)

• Constant shift is special to discounted models

• Discounted problems have another property
of major importance: T and Tµ are contraction
mappings (we will show this later)



CONVERGENCE OF VALUE ITERATION

• If J0 ≡ 0,

J∗(x) = lim
k→∞

(T kJ0)(x), for all x

Proof: For any initial state x0, and policy π =
{µ0, µ1, . . .},

Jπ(x0) = E

{

∞
∑

ℓ=0

αℓg
(

xℓ, µℓ(xℓ), wℓ

)

}

= E

{

k−1
∑

ℓ=0

αℓg
(

xℓ, µℓ(xℓ), wℓ

)

}

+E

{

∞
∑

ℓ=k

αℓg
(

xℓ, µℓ(xℓ), wℓ

)

}

The tail portion satisfies

∣

∣

∣

∣

∣

E

{

∞
∑

ℓ=k

αℓg
(

xℓ, µℓ(xℓ), wℓ

)

}
∣

∣

∣

∣

∣

≤
αkM

1− α
,

where M ≥ |g(x, u, w)|. Take min over π of both
sides, then lim as k → ∞. Q.E.D.



BELLMAN’S EQUATION

• The optimal cost function J∗ satisfies Bellman’s
Eq., i.e. J∗ = TJ∗.

Proof: For all x and k,

J∗(x)−
αkM

1− α
≤ (T kJ0)(x) ≤ J∗(x) +

αkM

1− α
,

where J0(x) ≡ 0 and M ≥ |g(x, u, w)|. Applying
T to this relation, and using Monotonicity and
Constant Shift,

(TJ∗)(x)−
αk+1M

1− α
≤ (T k+1J0)(x)

≤ (TJ∗)(x) +
αk+1M

1− α

Taking the limit as k → ∞ and using the fact

lim
k→∞

(T k+1J0)(x) = J∗(x)

we obtain J∗ = TJ∗. Q.E.D.



THE CONTRACTION PROPERTY

• Contraction property: For any bounded func-
tions J and J ′, and any µ,

max
x

∣

∣(TJ)(x)− (TJ ′)(x)
∣

∣ ≤ αmax
x

∣

∣J(x)− J ′(x)
∣

∣,

max
x

∣

∣(TµJ)(x)−(TµJ ′)(x)
∣

∣ ≤ αmax
x

∣

∣J(x)−J ′(x)
∣

∣.

Proof: Denote c = maxx∈S

∣

∣J(x)− J ′(x)
∣

∣. Then

J(x)− c ≤ J ′(x) ≤ J(x) + c, ∀ x

Apply T to both sides, and use the Monotonicity
and Constant Shift properties:

(TJ)(x)−αc ≤ (TJ ′)(x) ≤ (TJ)(x)+αc, ∀ x

Hence

∣

∣(TJ)(x)− (TJ ′)(x)
∣

∣ ≤ αc, ∀ x.

Q.E.D.



NEC. AND SUFFICIENT OPT. CONDITION

• A stationary policy µ is optimal if and only if
µ(x) attains the minimum in Bellman’s equation
for each x; i.e.,

TJ∗ = TµJ∗.

Proof: If TJ∗ = TµJ∗, then using Bellman’s equa-
tion (J∗ = TJ∗), we have

J∗ = TµJ∗,

so by uniqueness of the fixed point of Tµ, we obtain
J∗ = Jµ; i.e., µ is optimal.

• Conversely, if the stationary policy µ is optimal,
we have J∗ = Jµ, so

J∗ = TµJ∗.

Combining this with Bellman’s Eq. (J∗ = TJ∗),
we obtain TJ∗ = TµJ∗. Q.E.D.


